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Chapter 1 
 

INTRODUCTION 
 

1.1    Background and Motivation 
 

One of the National Aeronautics and Space Administration�s (NASA�s) current 
goals, the National Aviation Safety Goal, is to reduce the aircraft accident rate by a factor 
of 5 within 10 years, and by a factor of 10 within 25 years. One of the leading factors in 
fatal aircraft accidents is loss of control in flight, which can occur due to flying in severe 
weather conditions, pilot error, and vehicle system failure. Focusing on helicopter system 
failures, an investigation in 1989 found that 32 percent of helicopter accidents due to 
fatigue failures were caused by damaged engine and transmission components (Astridge 
(1989)). Another report on helicopter accidents was published in July 1998 in support of 
the National Aviation Safety Goal (Aviation Safety and Security Program, the Helicopter 
Accident Analysis Team (1998)). The purpose of this study was to recommend areas 
most likely to reduce rotorcraft fatalities in the next ten years. A study of 1168 fatal and 
nonfatal accidents that occurred from 1990 to 1996 found that after human factors related 
causes of accidents, the next most frequent causes of accidents were due to various 
system and structural failures. Loss of power in-flight caused 26 percent and loss of 
control in-flight caused 18 percent of this type of accident. In more recent statistics, of 
the world total of 192 turbine helicopter accidents in 1999, 28 were directly due to 
mechanical failures with the most common in the drive train of the gearboxes (Learmont 
(2000)).  

One technology area recommended for helicopter accident reduction is the design 
of Health and Usage Monitoring Systems (HUMS) capable of predicting imminent 
equipment failure for on-condition maintenance and more advanced systems capable of 
warning pilots of impending equipment failure. Transmission diagnostics are critical to 
helicopter safety and an important part of a helicopter HUMS because helicopters depend 
on the power train for propulsion, lift, and flight maneuvering. In order to predict 
transmission failures, the system must provide real-time performance monitoring of the 
transmission components and must also demonstrate a high level of reliability to 
minimize false alarms. 

Various diagnostic tools exist for diagnosing damage in helicopter transmissions, 
the most common being vibration-based tools. Using vibration data collected from 
gearbox accelerometers, algorithms are developed to detect when gear damage has 
occurred. Over the past 25 years, numerous vibration-based algorithms for gear damage 
detection have been developed. Unfortunately, to this date, a complete database of 
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existing vibration algorithms and their capabilities and limitations is not available. This is 
due in part to the limited transmission damage data required for assessment and 
validation of vibration algorithm performance.  

Oil debris is another diagnostic tool used to identify abnormal wear-related 
conditions of transmissions. Many techniques are currently available for wear debris 
monitoring (Hunt (1993)). Oil debris monitoring for gearboxes consists mainly of off-line 
oil analysis, where samples are analyzed for trends that indicate component failure, or 
plug type chip detectors, where a magnet captures debris and forms an electrical bridge 
between contacts that indicates a state change.  Inductance type sensors, used for 
detecting the failure of rolling element bearings in engines, but not commonly used for 
gear damage detection, measure a disturbance to a magnetic field caused by a particle 
passing through the sensor.   

The goal in the development of future HUMS is to increase reliability and 
decrease false alarms.  HUMS are not yet capable of real-time, on-line, health 
monitoring. Current data collected by HUMS is processed after the flight and is plagued 
with high false alarm rates and undetected faults. The current fault detection rate of 
commercially available HUMS through vibration analysis is about 70 percent (Larder 
(1999)). False warning rates are on average, 1 per hundred flight hours (Stewart (1997)). 
This is due to a variety of reasons. Vibration-based systems require extensive 
interpretation by trained diagnosticians. Operational effects can adversely impact the 
performance of vibration diagnostic parameters and result in false alarms (Dempsey and 
Zakrajsek (2001); Campbell, et al. (2000)). Analysis of oil debris data also requires 
interpretation by experts to determine the health of the monitored system. False alarms 
also occur when using oil debris analysis. This is due to non-failure debris, introduced 
into the system during routine maintenance, detected by the oil debris sensor (Howard 
and Reintjes (1999)).  

Eurocopter, the first aircraft manufacturer to develop HUMS for its helicopters, 
have documented an assessment of their experience in HUMS development over the past 
10 years (Pouradier and Trouve� (2001)). In this paper, they noted several shortfalls of 
today�s HUMS, identified several reasons for these shortfalls, and offered their ideas to 
correct these shortfalls. For completeness, a table of these shortfalls and proposed ways 
of improvement has been reproduced in Table 1.1. The reasons listed, such as system 
complexity and damage never or inconsistently detected, confirm the need to improve the 
performance of current HUMS.  This table also indicates the diagnostic system will be 
used as a maintenance tool.  For this reason, the diagnostic system must be provide the 
end user a simple decision making tool on the health of the system. 

One technique for increasing the reliability and decreasing the false alarm rate of 
current HUMS is to replace simple single sensor limits with multisensor systems 
integrating different measurement technologies. Integrating the sensors into one system is 
believed to be the critical key to improving damage detection. Recent papers have been 
published that discuss the benefits of integrating different measurement technologies such 
as oil and vibration based systems to improve current HUMS. One paper applied data 
fusion techniques to accelerometer data collected from 8 accelerometers on a helicopter 
gearbox (Erdley and Hall (1998)). Controlled ground tests were performed on a Chinook 
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TABLE 1.1  

Eurocopter�s list of shortfalls (Pouradier and Trouve (2001)). 
Shortfalls/Unforeseen 

Difficulties 
Reasons identified Eurocopter�s answer 

Integration with operator�s 
maintenance and logistic 
organization 

1. System complexity 
2. New operator skills 

• Adaptation of organizations (done) 
• Training (continuing action) 
• Improved documentation 

(continuing action) 
• Support from aircraft manufacturer 

(continuing action) 
Limited maintenance credits 
• Limited maintenance 

alleviation 
• TBOs unchanged 

Performance 
• Lack of evidence of 

performance 
• Incomplete defect coverage 
• Limited prognosis 

performance 
 
Regulation 

Requirements more 
demanding than those for 
maintenance tools 

Performance (launched) 
• Cooperation with operators on 

database gathering/analysis 
• Research activity to increase defect 

coverage and prognosis performance 
• Economic benefit of structural usage 

monitoring to be assessed 
 
Regulation 

Consider HUMS a maintenance tool 

Some mechanical damage is 
still missed 
• Monitoring of epicyclic 

stages to be improved 
• Some damage is never or is 

inconsistently detected 

Performance 
• Incomplete defect coverage 

Performance 
• Research activity to increase defect 

coverage (continuing action) 
• Techniques other than vibration 

analysis to be considered (launched) 

Operating cost higher than 
anticipated 
• Decision making sometimes 

difficult 

Performance 
• Limited diagnosis perform-

ance because of not �defect 
specific� monitoring 
techniques 

Performance 
• Improved diagnostic procedures 

(continuing action) 
• Research activity to improve 

diagnosis performance (launched) 
Acquisition cost 
• Most of the Civil applications 

in the North Sea sector 
• HUMS mostly installed on 

heavy aircraft 

Technology 
• Not enough standardization 
• Difficulty in retrofitting 

HUMS in aircraft with 
analogue avionics 

• Rapid obsolescence 
Regulation 
• High integrity requirement 

Technology 
• Standardization (continuing action) 
• Integration into digital avionics 

systems (done) 
 
Regulation 
• Consider HUMS a maintenance tool 

Support cost higher than 
anticipated 
• Long maturing process 
• Help for diagnostics 
• Threshold adjustment 
• Continuous development 

Performance 
• Monitoring techniques not 

�defect specific� 
 
Regulation 
• High integrity requirement 

Performance (continuing action) 
• Streamlining ongoing development 

activity through support contracts 
• Improved diagnostic procedures 
• Research activity 
 
Regulation 
• Consider HUMS a maintenance tool 

Reprinted with permission from the American Helicopter Society.   
Published in the proceedings of the American Helicopter Society 57th Annual Forum 
held in Washington D.C., May 2001. 
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CH-46 helicopter gearbox with faults introduced into the system. The objective of this 
work was to classify different types of faults based on vibration data. Three decision level 
fusion techniques were used to make a fused decision: voting, weighted voting, and 
Bayesian inference. Results showed more reliable decisions were achieved through the 
use of multisensor fusions over the single sensor case. 

Several other papers provided conceptual approaches to the fusion of oil debris 
and vibration measurements for condition monitoring, but did not demonstrate integration 
of vibration and oil debris measurement technologies results in a gear health monitoring 
system with improved detection and decision-making capabilities. One provided a simple 
framework of integrating oil and vibration technologies with a discussion on a new oil 
debris sensor under development by the author (Howard and Reintjes (1999)). Another 
paper on vibration and oil debris data collected from a small gearbox shows vibration and 
oil debris increase when damage occurs (Byington, et al. (1999)).    

A visual programming toolkit was also developed for multisensor data fusion 
applications (Hall and Kasmala (1996)). The toolkit gives the user the capability to select 
and apply multisensor data fusion processing techniques to experimental data. Using 
preliminary data collected in the Spur Gear Fatigue Rig, the toolkit software was 
programmed. The output was a plot of darker/denser lines to indicate the possible 
damage. Decision-making capabilities were not part of this work.  

 
1.2   Statement of Problem, Scope and Objectives 
 

The basic hypothesis of this thesis is to demonstrate integrating the different 
measurement technologies results in a system with improved detection and decision-
making capabilities as compared to existing individual diagnostic tools.  Specifically, the 
objective of this research is to integrate oil debris and vibration based gear damage 
detection techniques to obtain an improved system for detecting gear pitting damage.  
The hypothesis will be evaluated experimentally by collecting vibration and oil debris 
data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. The 
vibration data will be collected from accelerometers and used to calculate gear vibration 
diagnostic algorithms.  The oil debris data will be collected using a commercially 
available in-line oil debris sensor. A gear diagnostic feature based on oil debris will also 
be developed as part of this thesis.  Once a significant amount of experiments are 
performed with and without gear pitting damage, the oil debris and vibration data will be 
integrated using fuzzy logic and multisensor data fusion techniques combined into a 
system model.  

Referring back to Table 1.1, this dissertation will address several shortfalls listed 
in this table that are also applicable to operation of the NASA Glenn fatigue test rigs. 
Results of this research are expected to decrease the system complexity by providing the 
end user with a simple tool to determine the health of a system. Moreover, addition of 
another measurement technology, oil debris analysis, will expand the defect coverage.  
 
1.3    Overview of Research 
 

The benefits of combining multiple sensors to make decisions include improved 
detection capabilities, decreased ambiguity, and increased probability the event is 
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detected. However, if the sensors are inaccurate, or the features extracted from the 
sensors are poor predictors of transmission health, integration of these sensors will 
decrease the accuracy of damage prediction. For this reason, one must carefully choose 
the sensor and features extracted from the sensors prior to integrating data from two 
different measurement technologies. The reasoning behind selection of the oil debris 
sensor, the two vibration algorithms and the analytical approach will be discussed.  

Several companies manufacture on-line inductance type oil debris sensors that 
measure debris size and count particles (Hunt (1993)). New oil debris sensors are also 
being developed that measure debris shape in addition to debris size in which the shape is 
used to classify the failure mechanism (Howard, et al. (1998) and Roylance (1997)). The 
oil debris sensor used in this analysis was selected for several reasons. The first three 
reasons were sensor capabilities, availability and researcher experience with this sensor. 
Results from preliminary research indicate that the debris mass measured by the oil 
debris sensor showed a significant increase when pitting damage began to occur 
(Dempsey (2000)). The oil debris sensor has also been used in aerospace applications for 
detecting bearing failures in aerospace turbine engines (Miller and Kitaljevich (2000)). 
From the manufacturer�s experience with rolling element bearing failures, a relationship 
was established to set warning and alarm threshold limits for damaged bearings based on 
accumulated mass. Regarding its use in helicopter transmissions, a modified version of 
this sensor has been developed and installed in an engine nose gearbox and is currently 
being evaluated for an operational AH-64 (Howe and Muir (1998)). Due to limited access 
to oil debris data collected by this type of sensor from gear failures, no such relationship 
is available that defines oil debris threshold limits for damaged gears. A feature for 
indicating gear tooth damage and a method for defining warning and alarm limits based 
on this feature are required prior to data fusion. The method developed in support of this 
research is outlined in Chapter 3, section 3.1.4, Oil Debris Feature. 

Although various techniques exist for diagnosing damage in helicopter 
transmissions, the method most widely used involves monitoring vibration (Land (1998)). 
Numerous algorithms have been developed for the processing of vibration data collected 
from gearbox accelerometers to detect when gear damage has occurred.  Since the focus 
of this dissertation is not the development of new vibration algorithms for gear damage 
detection, the vibration-based algorithms used in this analysis were limited to those 
assessed in NASA Glenn test rigs. Several references summarize the transmission 
diagnostics using vibration-based measurement technologies tested at NASA Glenn from 
1990 until 1997 (Zakrajsek et al. (1995b); Zakrajsek (1994); and Townsend (1997)). The 
vibration algorithms chosen for this analysis, FM4 and NA4, were selected based on their 
maturity, published success in detecting damage to gears, and validation in the NASA 
Glenn test rigs (Stewart (1977); Zakrajsek (1989); Zakrajsek (1993, 1994a, 1994b, 
1995a)).  FM4 was developed over 20 years ago to detect changes in the vibration pattern 
resulting from damage on a limited number of teeth (Stewart (1977)). NA4 was 
developed over 8 years ago to detect the onset of gear damage and to continue to react to 
the damage as it spreads (Zakrajsek, et al. (1993)). Details of both vibration algorithms 
can be found in Chapter 3, section 3.1.1, Vibration Features FM4 and NA4. 

Prior to integrating two measurement technologies, the individual accuracy and 
integrity of both the oil debris sensor and the vibration algorithms must be assessed. This 
was done early in the research process to verify the feasibility of this research proposal. 
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Detailed results of these preliminary tests are discussed in Chapter 3, section 3.1.2, 
Preliminary Evaluation of Damage Detection Features.  If during these tests, the selected 
oil debris sensor and vibration algorithms show no indication of damage individually, 
combining them will not be of much benefit. Tests on spur gears in the Spur Gear Fatigue 
Test Rig were conducted to establish validity of the above two measurement techniques. 
Additionally, experimental data from these tests were used to compare the relative 
performance of these methods.   Results of these tests indicate the debris mass measured 
by the oil debris sensor is comparable to the vibration algorithms in detecting gear pitting 
damage.  Summarized results have been published (Dempsey (2000)).   From these results 
it was determined conclusively that the research objectives were feasible and successful 
results will have the potential to improve the design of future HUMS (Forror (2000)).  

This research focused on one type of gear and one mode of gear damage, spur 
gears and pitting damage. Spur gears were chosen based on the availability of aerospace 
quality test gears in the Spur Gear Fatigue Test Rig. Pitting is a fatigue failure due to the 
high contact stresses found in gears. Pitting occurs when small pieces of material break 
off from the gear surface, producing pits on the contacting surfaces (Townsend (1991)). 
Pitting fatigue was chosen as the failure mechanism because of the availability of pitting 
fatigue damage data in the Spur Gear Fatigue Test Rig and because NASA�s goal is to 
design safer drive trains through the design of gears that do not fail catastrophically 
without warning.  Since fatigue cracks, in many cases, propagate quickly, design 
guidelines have been established to prevent these catastrophic failures (Lewicki (2001)).  
Future gears will be designed that fail in the most benign and detectable manner.  

Gears were run until pitting occurs on several teeth. Pitting was detected by visual 
observation through periodic inspections on the first two experiments performed with 
damage. Pitting was detected by a video inspection system on the remaining experiments 
with pitting damage. The video inspection system installed on the rig is capable of 
following the progression of gear pitting without gearbox cover removal. Two levels of 
pitting were monitored per standard Spur Gear Fatigue Test Procedures, initial and 
destructive pitting. In this study, initial pitting is defined as pits less than 1/64 in. 
(0.0397cm) diameter and cover less than 25 percent of tooth contact area and destructive 
pitting is more severe and defined as pits greater than 1/64 in. (0.0397cm) diameter and 
cover greater than 25 percent of tooth contact area. If not detected in time, destructive 
pitting can lead to a catastrophic transmission failure if the gear teeth crack.  

Multisensor data fusion analysis techniques were chosen for application to gear 
damage data collected from two accelerometers and an oil debris sensor in the NASA 
Glenn Spur Gear Fatigue Test Rig. Multisensor data fusion is a process similar to 
methods humans use to integrate data from multiple sources and senses to make 
decisions. In this process, data from multiple sensors are combined to perform inferences 
that are not possible from a single sensor. Commercially available software, Matlab, 
was used to perform the analysis on the data collected in support of this thesis. 

This thesis is organized as follows. Chapter 2 describes the NASA Glenn Spur 
Gear Fatigue Test Rig, test procedures, instrumentation, and data collection. Chapter 3 
discusses the research methodology and is separated into 3 subchapters.  Subchapter 3.1 
outlines the diagnostic feature selection and validation in four sections.  Section 3.1.1 
discusses feature extraction from vibration data using algorithms FM4 and NA4. Feature 
extraction refers to the process that converts the data output from the sensor into a 
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representation of the data that is useful in the damage identification process. Section 3.1.2 
discusses preliminary data used to assess the feasibility of this topic. Section 3.1.3 
discusses vibration algorithm NA4 Reset developed as the result of the preliminary 
evaluation of the vibration data discussed in section 3.1.2.  Section 3.1.4 defines the 
process used to develop the oil debris damage detection feature.  Subchapter 3.2 provides 
an overview of the data analysis methods in two sections.  Section 3.2.1outlines the data 
fusion process.  Section 3.2.2 discusses fuzzy logic, the analysis technique chosen for the 
damage identification and decision fusion steps in the data fusion process.  Subchapter 
3.3 discusses the validation of the features for damage detection. Chapter 4 discusses the 
results of this research in two subchapters.  Subchapter 4.1 provides an assessment of the 
integration of the diagnostic features.  Subchapter 4.2 discusses applying this analysis to 
the NASA Glenn Spiral Bevel Gear Test Facility. Conclusions and future work are 
presented in Chapter 5.  The provided appendices contain supplementary analyses and 
discussions in support of various topics and are referred to in the respective chapters.  
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Chapter 2 
 

EXPERIMENTAL SETUP AND PROCEDURES 
 

Experimental data for this research were obtained from tests performed in the 
Spur Gear Fatigue Test Rig at NASA Glenn Research Center. The Spur Gear Fatigue 
Test Rig became operational in 1972. The rig was developed to study the effects of gear 
materials, gear surface treatments and lubrication on the surface fatigue strength of 
aircraft quality gears. The fatigue rig was modified later for use in diagnostic studies. 
Diagnostic tests began to be performed in conjunction with the fatigue tests in 1992 
(Zakrajsek, et al. (1992)). The fatigue rig is capable of loading gears, then running gears 
until pitting failure is detected. Figure 2.1 shows the test apparatus in a schematic 
drawing. Figure 2.2 shows the test apparatus in a cutaway view. Operating on a four 
square principle, the shaft and gear on one shaft are coupled together with a torque 
applied by a hydraulic loading mechanism that twists the shafts with respect to one 
another. The power required to drive the system is only enough to overcome friction 
losses in the system (Lynwander (1983)).  

The test gears are standard spur gears having 28 teeth, 3.50 in. (8.89 cm) pitch 
diameter, and 0.25 in. (0.635 cm) face width. The test gears were made from SAE 9310 
or Pyrowear 53 steel and manufactured to AGMA class 13 aircraft tolerances.  The test 
gears are run offset, as shown in Figure 2.2, to provide a narrow effective face width to 
maximize gear contact stress while maintaining an acceptable bending stress. Offset 
testing also allows four tests on one pair of gears. 

Fatigue test procedures allowed damage to be correlated to the oil debris and 
vibration sensor data and are discussed in the following section. For these tests, the shaft 
speed was 10000 RPM and applied torque was either 53 or 71 ft-lbs (72 or 96 N⋅m). The 
load was increased during some tests to obtain failures within a shorter test time. Prior to 
collecting test data, the gears were subjected to break in operation for 1 hr at a torque of 
10 ft-lbs (14 N⋅m) and 10000 RPM. Test gears were inspected periodically for damage 
throughout the duration of the test. The data measured during this break-in period was 
stored, then the oil debris sensor was reset to zero at the start of the loaded test. Test gears 
were inspected either manually or using a video inspection system. The video inspection 
system consisted of a micro camera, VCR, and monitor. Use of the video inspection 
system did not require gearbox cover removal. The micro camera was fed through 2 ports 
on the top of the gearbox cover. One port is shown in Figure 2.1 as the viewing port. The 
contact surface area image was then recorded for each tooth. When damage was found, 
the damage was documented and correlated to the test data based on a reading number. In 
order to document tooth damage, reference marks were made on the driver and driven 
gears during installation to identify tooth 1. The mating teeth numbers on the driver and 
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driven gears are then numbered from this reference. Figure 2.3 identifies the driver and 
driven gear with the gearbox cover removed. 

Data were collected using vibration, oil debris, speed and pressure sensors 
installed on the test rig. Detailed sensor specifications are listed in Table 2.1. 

Vibration was measured on the gear housing and through the shaft using 
miniature, lightweight, piezoelectric accelerometers.  Locations of both sensors, labeled 
shaft and housing, are shown in Figure 2.3. These locations were chosen based on an 
analysis of optimum accelerometer locations for this test rig (Zakrajsek, et al. (1992)). A 
modal analysis was also performed on the rig to verify these locations did not change. 
Results of this analysis are in Appendix C. The two sensors were chosen based on their 
ability to measure a high frequency signal, since the gear meshing frequency for 28 teeth 
is approximately 4700 Hz (28 teeth by 10,000 rpm by 1/60), and the first harmonic is  
9400 Hz. The vibration data were sampled at 200 KHz. Per the Nyquist theorem, the 
sample rate must be 2 times the maximum frequency component in the signal measured. 
This is a starting point for adequate sampling rate, with the actual sampling rate at 5 or  
10 times the maximum frequency. In some cases, the sampling rate is limited by the data 
acquisition (DAQ) card. The DAQ card used for this application is capable of sampling 8 
differential channels at a net sampling rate of 1250 KHz. Since only four channels were 
recorded on the DAQ card, sample rates of 200 KHz could be obtained. In order to verify 
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Figure 2.3.—Accelerometer locations on spur gear fatigue test rig (gearbox

   cover removed).

Housing

Shaft
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TABLE 2.1 
Sensor Specifications 

Sensor Range 
Shaft 

Accelerometer 
0.7 Hz - 10 KHz 

Housing 
Accelerometer 

5 Hz - 30 KHz 

Oil Debris 
 

125-1016 microns 

Shaft Speed 
 

0-10,000 RPM 

Load 
Pressure 

0-1000 psi 

 
frequencies over half the sampling frequency were not recorded, a lowpass filter was 
added before the vibration signal entered the DAQ card.  

Oil debris data were collected using a commercially available oil debris sensor. 
The oil debris sensor is an in-line device installed downstream of the test lubricant outlet 
identified on Figure 2.1. The sensor consists of three coils surrounding a nonconductive 
section of tubing. Two coils are wound in opposite directions and are driven by an 
alternating current source. Disturbances of the magnetic field, when a metal particle 
passes, produces an electrical signal that is measured by the sense coil. The amplitude of 
the sensor output signal is proportional to the particle mass (Metalscan User�s Manual 
C000833). Sensor output connects to the facility data acquisition computer via an RS232 
cable. The sensor measures the number of particles, their approximate size (125 to 1000 
µm) and calculates an accumulated mass (Howe and Muir (1998)). Figure 2.4 shows the 
cross section view of the oil debris sensor. Two filters are located downstream of the oil 
debris sensor to capture the debris after it is measured by the sensor. 

Shaft speed was measured by an optical sensor that creates a pulse signal for each 
revolution of the shaft. A speed pulse is required for calculation of the vibration 
algorithms and will be discussed in the next chapter, Vibration Features FM4 and NA4. 

Load pressure was measured using a capacitance pressure transducer. Torque on 
the gear tooth is calculated from this load pressure. 
 

 
Figure 2.4.�Oil debris sensor cross section. 

                (Metalscan User�s Manual) 
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 Oil debris monitor, speed, pressure, and raw vibration data were collected and 
processed in real-time using the program ALBERT, Ames-Lewis Basic Experimentation 
in Real Time, co-developed by NASA Glenn and NASA Ames. ALBERT is a data 
acquisition program developed to collect data in NASA gear diagnostic test facilities. The 
program uses a commercially available programming language (Labview Basic I 
Course Manual). ALBERT collects and displays the vibration data from the DAQ card 
and the oil debris data from the RS232 connection in real-time during tests in the Spur 
Gear Fatigue Test Rig. 

Oil debris and pressure data were recorded once per minute. Reading number, 
based on data collection rate, is equivalent to minutes and can also be interpreted as mesh 
cycles equal to reading number times 104. Vibration and shaft rotational speed data were 
sampled at 200 KHz for one second duration every minute. Vibration algorithms FM4 
and NA4 were calculated from this data and recorded every minute.  The steps to 
calculate vibration algorithms FM4 and NA4 are discussed in the next chapter, section 
3.1.1, Vibration Features FM4 and NA4. 
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Chapter 3 
 

RESEARCH METHODOLOGY 
 

3.1  Diagnostic Feature Selection and Validation 
  
3.1.1 Vibration Features FM4 and NA4 
 

Two vibration diagnostic parameters were selected as the vibration features for 
this analysis, FM4 and NA4. FM4 was developed to detect changes in the vibration 
pattern resulting from fatigue damage on a limited number of teeth (Stewart (1977)). 
NA4 was developed to detect the onset of fatigue damage and to continue to react to the 
damage as it spreads (Zakrajsek, et al. (1993)). FM4 and NA4 are dimensionless 
parameters with nominal values of approximately 3. When gear damage occurs, the 
values of FM4 and NA4 increase.  

Prior to calculating FM4 and NA4, the time-synchronous average of the vibration 
data is calculated. Synchronous averaging of time signals is a technique used to extract 
periodic waveforms from additive noise by averaging the vibration signal over one 
revolution of the shaft. The signal time-synchronous average is obtained by taking the 
average of the signal in the time domain with each record starting at the same point in the 
cycle as determined by the once per revolution tachometer signal. Using the above 
averaging scheme, the desired signal that is synchronous with the shaft rotational 
frequency will intensify relative to the nonperiodic signals. This time synchronous 
average signal is used as a basis for FM4 and NA4 methods (Zakrajsek (1989) and 
Zakrajsek, et al. (1993)). 
 An example of obtaining the time synchronous average for the vibration data 
collected for this experiment is shown in Figure 3.1. The plots are displays available from 
the ALBERT data acquisition software. The first plot shows the raw vibration data 
sampled at 200KHz for 1 sec duration. The second plot shows one revolution of the 167 
cycles averaged. The last plot is the average of 167 revolutions of vibration data 
interpolated to 1024 points for 1 shaft revolution. This interpolated data is used to 
calculate FM4 and NA4.  

Several statistical and filtering operations are used to calculate FM4. First the 
regular meshing components are filtered from the signal resulting in a difference signal. 
The regular meshing components are the shaft and meshing frequencies, their harmonics 
and first order sidebands. Two statistical operations are then performed on the filtered 
signal to obtain standard deviation and kurtosis. Kurtosis is the statistical parameter that 
quantifies how �Gaussian� a time history is, and is defined as the fourth moment of a 
probability density function (Tustin Technical Institute (1996)).  
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FM4 is calculated as follows: 
 

 4)(
4

RMSDS
KFM =   (3.1) 

 
where K is Kurtosis and RMSDS is the root-mean-square of the difference signal. The 
Kurtosis is calculated by  
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where d is the difference signal, d  is the mean value of the difference signal, and N is the 
total number of interpolated data points per reading. RMSDS, the standard deviation of 
the difference signal, is calculated by (Zakrajsek (1989)) 
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A flowchart of the calculation procedure is shown in Figure 3.2. Referring to this 
figure, perform a Fast Fourier Transform on the time synchronous averaged 
accelerometer data.  In the frequency domain, filter the shaft and meshing frequencies of 
the test gears and slave gears, their harmonics and first order sidebands. Perform an 
inverse Fast Fourier Transform to return to the time domain. Subtract the filtered signal 
from the averaged accelerometer data to obtain a difference signal. Calculate the 
normalized kurtosis and standard deviation of the difference signal. Then, divide kurtosis 
by standard deviation to the fourth power. 

For FM4, the standard deviation of the difference signal indicates the amount of 
energy in the non meshing components.  The kurtosis indicates the presence of peaks in 
the difference signal.  The theory behind FM4 is that for a gear in good condition, the 
difference signal would be noise with a Gaussian amplitude distribution.  The standard 
deviation should be relatively constant, and normalized kurtosis indicates a value of 
three.  When a tooth develops a major defect, a peak or series of peaks appear in the 
difference signal, causing the kurtosis value to increase.  The standard deviation increases 
only when the peaks become severe enough to bring up the RMS of the entire difference 
signal (Zakrajsek (1989)). 

The NA4 parameter is calculated in a similar manner to FM4, with two 
alterations. The first change involves retaining the first order sidebands when filtering the 
meshing components of the difference signal. The developer of NA4 determined 
diagnostic information in the sidebands contained useful information and should be 
maintained (Zakrajsek et al. (1993)). Three plots shown in Figure 3.3 show the NA4 
signal in the time and frequency domain before and after filtering.  Plot (a) shows the 
time synchronous averaged signal of the vibration data in the time domain before NA4
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filtering. Plot (b) shown the original signal in gray and the filtered part of the signal 
overlaid in black in the frequency domain.  The filtered signals are the test gear and slave 
gear meshing frequencies (4667 and 5833 Hz) and their harmonics.  Plot (c) shows the 
signal after filtering in the time domain. 

The second change is that while FM4 is calculated by the kurtosis of a data record 
divided by the square of the variance of the same record, NA4 is divided by the square of 
the average variance. The average variance is the mean value of the variance of all 
previous data records in the run ensemble (Zakrajsek, et al. (1994b)). The average 
variance was used to compare changes in the residual signal to the running average of the 
variance of the system. This caused NA4 to grow with the severity of the fault until the 
average of the variance itself changes.  NA4 is calculated as follows: 
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where r is the residual signal obtained by removing shaft frequencies, meshing 
frequencies, and their harmonics from the FFT of the time synchronous averaged signal, 
r  is the mean value of residual signal, N is the total number of interpolated data points 
per reading, i is the interpolated data point index per reading, M is the current reading 
number (total number of data points for averaging), and j is the reading number. 
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Figure 3.3� (a) Time synchronous averaged signal. 
(b) Converted to the frequency domain with meshing 
components filtered. (c) After NA4 filtering. 
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3.1.2  Preliminary Evaluation of Damage Detection Features 

 
Preliminary tests were performed in the Spur Gear Fatigue Test Rig. The objective 

of these tests was to assess the capability of the individual parameters to detect gear 
pitting damage. If the parameters were unable to predict transmission health separately, 
very little benefit would be obtained by fusing them together. The original focus of these 
preliminary tests was to determine if the oil debris sensor was sensitive enough to detect 
pitting fatigue failures of gears. Although the two vibration algorithms were selected 
based on their past history of successfully predicting gear pitting damage, it was found 
improvements were required to the vibration algorithms prior to integration. Results of 
this preliminary study are discussed in this section. 

The analysis is based on data collected from two gear tests that ended when 
pitting damage occurred. Figure 3.4 is a plot of the data measured during testing of Gear 
Set 1. Vibration algorithms FM4, NA4, and the accumulated mass measured by the oil 
debris monitor (ODM), referred to as the oil debris sensor, are plotted versus reading 
number.  Readings were recorded once per minute. This test collected 13716 readings 
over 228 hours. FM4 and NA4 were calculated for both the accelerometer located on the 
shaft and the accelerometer located on the housing. During the 228 hours of testing, ten 
shutdowns occurred. To restart after shutdown, the rig was brought up to speed, and load 
was reapplied. These load changes caused significant spikes in the NA4 plot that can be 
readily observed on Figure 3.4 following shutdowns at readings 1455, 2576, 3663, 3736, 
3982, 4128, 4681, 5035, 5309, and 5435. The sensitivity to load was due to the changes 
of the running average in the denominator of this algorithm. Unfortunately, this change 
was due to a load change, not a damaged gear.  

 
 

 
 

Figure 3.4.�Vibration and oil debris data for gear set 1. 
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The sensitivity of NA4 to even minor changes in load has been documented in 

several research papers (Zakrajsek, et al. (1994a) and Zakrajsek, et al.  (1995a)). NA4 
Reset was developed as the result of these initial findings and is discussed in detail in 
section 3.1.3, Justification of Vibration Feature NA4 Reset. Another observation to note 
on Figure 3.4 is that after the shutdown at reading 4681, the oil debris monitor indicated 
one 725 to 775 micron particle passed through the sensor, causing a large increase in the 
accumulated mass. This one large chip was apparently flushed out of the line when the 
rig was restarted after the shutdown. This finding established the large role operational 
effects play on the diagnostic tools and the need to take these effects into consideration 
when developing a reliable health monitoring system. 

Initial pitting appeared to occur at reading 11647. At the completion of the test, 
the gears were inspected for damage. Initial pitting was observed on tooth 12 of both the 
driven and driver gears. By visual observation of the overall plot on Figure 3.4, all 
parameters showed a significant increase when pitting damage began to occur. Figure 3.5 
has an expanded scale in order to observe the increase in NA4 and FM4 as pitting 
damage progressed. Reviewing Figures 3.4 and 3.5, vibration algorithms FM4 and NA4 
for both accelerometers, and the accumulated mass increase significantly when pitting 
damage occurs. Figure 3.6 shows photos of the damage on the driver and driven tooth 12 
at the completion of the test.  Damage progression images were not obtained for these 
experiments because the video inspection system was installed after this preliminary 
evaluation. 

 
 
 

 
 

 

Figure 3.5.�Vibration and oil debris data for gear set 1 (expanded scale). 
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Figures 3.7 and 3.8 are plots of the data measured during testing of Gear Set 2. 
Vibration algorithms FM4, NA4, and the accumulated mass measured by the oil debris 
monitor are plotted versus reading number. Readings were recorded once per minute. 
During this test, 5314 readings were collected over 88 hours. FM4 and NA4 were 
calculated for both the accelerometer located on the shaft and the accelerometer located 
on the housing. Initial pitting appeared to occur at reading 5020. Gears were inspected at 
Reading 5181 and initial pitting was observed on teeth 15 and 16 of the driver gear and 
teeth 15,16, and 17 of the driven gear.  The gears were inspected at the completion of the 
test. From the inspection, initial pitting was observed on driver teeth 19,24, and 27, and 
driven tooth 14. A combination of initial and destructive pitting was observed on both the 
driver and driven gears teeth numbers 9,15,16,17,18, and 24.  Figure 3.9 shows photos of 
the damaged teeth at test completion.  

Referring to Figures 3.7 and 3.8, all parameters show a significant increase when 
pitting damage occurs. A shutdown with a load change at reading 380 caused the large 
spike of NA4. Shutdowns with load fluctuations also occurred at readings 4903, 4919, 
5128, and 5180. As shown on Figure 3.8, after the shutdown at Reading 4919, FM4 and 
NA4 increased then decreased slightly. This increase/decrease is most likely due to the 
load change. From these initial tests, an oil debris feature using the step change of mass 
over the time from the last step change of mass was looked at as a potential indicator of 
gear damage. However, the tests performed in the Spur Rigs are accelerated tests. 
Deriving a relationship between this time dependent oil debris feature and tests 
performed on other systems would be impossible. Further testing indicated accumulated 
oil debris provided better results for detecting gear pitting damage. The oil debris mass 
feature selected will be discussed in section 3.1.4, Oil Debris Feature. 

From this preliminary evaluation it was determined that defining specific 
threshold limits for vibration algorithms to indicate when pitting damage has occurred is 
a challenging task. Values of FM4 and NA4 are non-dimensional numbers with nominal 
values of 3. The threshold values vary when damage occurs. Several research papers 
define a range from 7 to 15 as NA4 reacts to pitting damage (Zakrajsek, et al. (1993) and 

Figure 3.6.�Gear damage at completion of gear set 1 test. 
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Figure 3.7.�Vibration and oil debris data for gear set 2. 

Figure 3.8.�Vibration and oil debris data for gear set 2 (expanded scale). 
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Choy et al. (1994)). For parameter FM4, values for initiation of pitting ranged from 3 to 7 
(Zakrajsek, et al. (1993, 1995)). One simple method for setting threshold limits is to set 
the limit by adding 3 times the standard deviation to the mean of baseline vibration data 
(Slemp and Skeirik (1999)).  During this preliminary evaluation, three additional tests 
were run on the test rig that generated no damage on the test gears. The run hours ranged 
from 350 to 497 hours for each test with a total of 1204 hours. The data recorded for FM4 
and NA4 during the tests when no damage occurred was used to apply this simple 
method to set threshold limits for these algorithms. This was done by calculating the 
mean and standard deviation during each test, and adding 3 times the standard deviation 
to the mean. Because the number of readings for each test varied, a weighted average of 
the limit was calculated based on the number of readings recorded during each test. From 
this exercise the limit for FM4 was 4.45 and the limit for NA4 was 7.33. Based on these 
threshold limits, FM4 indicated pitting damage sooner than NA4. NA4 had the most false 
alarms for this preliminary evaluation due to the sensitivity of NA4 to the load changes. 
A different technique for setting threshold limits to minimize false alarms will be 
discussed in subchapter 3.3, Feature Validation for Sensor Fusion. 

This preliminary research assessed the reliability of the individual parameters 
when detecting gear pitting. Based on the data collected, FM4, NA4, and the oil debris 
mass each showed a significant increase when pitting damage began to occur. Improving 
the reliability of the individual parameters must be done prior to integrating the three 
parameters into an intelligent health monitoring methodology. Results of this research 
identified several improvements to be made to the parameters to increase their individual 
performance. The first improvement, decrease the sensitivity of NA4 to load changes, 
resulted in the development of NA4 Reset, to be discussed in section 3.1.3, Justification 

Figure 3.9.�Gear damage at completion of gear set 2 test. 
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of Vibration Feature NA4 Reset. The second improvement was to develop a system for 
documenting damage progression. This resulted in the installation of the video inspection 
system for damage progression documentation. Figure 3.10 is a block diagram showing 
the video inspection system.  A micro camera is inserted in the gearbox viewing ports to 
view the driver and driven gear tooth contact area and to record these images on a VCR.  
The third improvement was to define a method to set alert and fault threshold limits for 
all three parameters. This method will be discussed in the section 3.3, Feature Validation 
for Sensor Fusion. It should be noted that Gear Set 1 and 2 herein will be referred to as 
Experiments 7 and 8.  
 
3.1.3  Justification of Vibration Feature NA4 Reset 
 

As discussed in Chapter 3, section 3.1.1, Vibration Features FM4 and NA4, when 
gear pitting starts, the magnitude of NA4 shows a significant increase above its typical 
value of 3. Unfortunately, as observed in the data from the preliminary evaluation, NA4 
responds similarly to load changes. The sensitivity of NA4 to even minor changes in load 
has been documented in several research papers (Zakrajsek, et al. (1994a) and Zakrajsek, 
et al. (1995a)).  The magnitude of NA4 reacts to changes in load since the load change 
affects the running average in the denominator of this algorithm. When using this 
algorithm to detect gear pitting damage on helicopter gearboxes in different flight 
regimes, the load effect on this algorithm must be minimized. Preliminary experiments 
have shown the need to minimize the effect of load on NA4.  Vibration feature NA4 
Reset was developed to minimize these load effects and will be discussed in this chapter. 

A change to the calculation of NA4 was required to minimize the effect of a 
fluctuating load on NA4. This change, NA4 reset, is made when the load increases or 

Figure 3.10.�Video inspection system. 
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decreases by a given percentage of the nominal value. For this application, a 10 percent 
load change limit was used. This 10 percent limit was used after analyzing the data to 
determine the largest load fluctuation NA4 could withstand without increasing in 
magnitude. If the system to apply NA4 had continuous load fluctuations, the benefit of 
maintaining a running average in the denominator would be minimal.  For NA4 reset, 
when the load changes by 10 percent, the denominator resets to the square of the variance 
of the same reading, and a new average variance for this load is calculated starting with 
the reading measured when the load changed. Each time the load changes beyond 10 
percent, the first reading in the average variance resets to the first reading when the load 
changed.  This first reading is calculated as follows: 
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The denominators for the readings that follow this load change are calculated as 

the square of the average variance, the mean value of the variance of all previous 
readings starting with the first reading when the load changed. Each time the load 
changes by 10 percent, the denominator is reset by using equation (3.5) for the initial 
reading.  

The analysis discussed in this section is based on data collected during 4 
experiments in the NASA Glenn Spur Gear Fatigue Rig, 3 of which involved pitting 
damage.  All of the instrumentation discussed in Chapter 2, Experimental Setup and 
Procedures, was collected during these experiments. NA4 was calculated for both 
accelerometers, and responded similarly, but only the accelerometer on the shaft is 
plotted for this analysis. The first experiment was to verify the effect of load on the NA4 
parameter. The load was increased and decreased with NA4 calculated from the vibration 
data. The gear set had no evidence of pitting before or after the test. A plot of Load 
Pressure, NA4 and NA4 Reset, for the first experiment, is shown on Figure 3.11. Data 
were collected every minute, so reading number is equivalent to minutes. Since the shaft 
speed is 10,000 rev/min, reading number can also be interpreted as mesh cycles equal to 
reading number times 104.  

As discussed previously, NA4 reset is the same as NA4 except the average 
variance in the denominator is reset each time the load fluctuated by 10 percent. From 
this plot, the sensitivity of NA4 to changes in load can be easily observed. NA4 appeared 
to track load pressure. The plot of NA4 reset in Figure 3.11 shows that applying this 
technique minimizes the sensitivity of NA4 to load.   

Although the sensitivity of NA4 to load changes can be corrected by resetting the 
denominator, one must verify that applying this technique does not significantly decrease 
the sensitivity of NA4 to pitting damage. Data from 3 experiments when pitting damage 
occurred and the load fluctuated were used to verify resetting the denominator of NA4 
did not decrease its sensitivity to pitting damage. Descriptions of the pitting damage that 
occurred during these 3 experiments are listed in Tables 3.1 to 3.3. Photos of damage 
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          Figure 5.1.—Data from experiment illustrating load effects.
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progression on a selected tooth during each experiment are shown on Figures 3.12 to 
3.14.  The test gears are run offset to provide a narrow effective face width to maximize 
gear contact stress and minimize bending fatigue failures. Damage levels for this analysis 
are defined as follows: 
 
1. Wear: Layers of metal uniformly removed from the surface  
2. Initial Pitting: Pits less than 1/64 in. in diameter and cover less than 25 percent of 

tooth contact area  
3. Destructive Pitting: Pits greater than 1/64 in. in diameter and cover greater than 25 

percent of tooth contact area 
 

Initial pitting on specific teeth will only be discussed in reference to test 
completion. Although initial pitting most likely occurred prior to test completion, a 
detailed analysis of the inspection images is required to verify when it occurred and is 
outside the scope of  this research.   

Plots of the data measured during these 3 experiments are shown on Figures 3.15 
to 3.21. Two different plots are shown for each experiment. The first plot is of Load  
Pressure, NA4 and NA4 reset for each experiment. The diamonds indicate when the rig 
was restarted after a shutdown. The second is a plot of FM4, NA4 Reset and the 
accumulated mass from the oil debris monitor. The triangles on the X-axis indicate the 
reading number that the rig was shutdown for inspection. These reading numbers are 
listed in tables 3.1 to 3.3. Each experiment will be discussed in turn. 
 
 

Figure 3.11.�Data from experiment illustrating load effects. 
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TABLE 3.1   

Damage Description for Experiment 1 
Reading Number 
Run Time (min) 

Damage Description Teeth damaged 
on Driver Gear 

Teeth damaged 
on Driven Gear 

60 Run-in Wear All All 
120 Wear All All 

1581 Wear All All 
10622 Wear All All 

 
14369 

Wear 
Destructive Pitting 

All   
6 

All   
6 

 
14430 

Wear 
Destructive Pitting 

All   
6 

All   
6 

 
14512 

Wear 
Destructive Pitting 

All   
6,7 

All   
6,7 

 
14688 

Wear 
Destructive Pitting 

All   
6,7 

All   
6,7 

 
14846 

Wear 
Destructive Pitting 

All   
6,7 

All   
6,7 

 
15136    

Wear 
Initial Pitting 

Destructive Pitting 

All teeth 
All teeth 

6,7,8 

All teeth 
 

6,7,10 
 
 

 
 
 
 

 
 
 

                
 

 

Figure 3.12.�Damage progression of driver/driven tooth 6 for experiment 1.  
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TABLE 3.2  
Damage Description for Experiment 2 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

1573 Run-in Wear All All 
 

2199 
Wear 

Destructive Pitting 
All   

  
All   
 11 

 
2296 

Wear 
Destructive Pitting 

All   
  

All   
 10, 11 

 
2444 

Wear 
Initial Pitting 

Destructive Pitting 

All   
 All  

10,11 

All   
10, 11, 14 
10,11,14 

 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3.13.�Damage progression of driver/driven tooth 11 for experiment 2. 
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TABLE 3.3   
Damage Description for Experiment 3 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

58 Run-in Wear All All 
 

2669 
Wear 

Destructive Pitting 
All   

1,28  
All   

 1,28 
 

2857 
Wear 

Destructive Pitting 
All   

1,6,28  
All   

 1,6,28 
 

3029 
Wear 

Initial Pitting 
Destructive Pitting 

All   
All 

1,6,28 

All   
 1,6,28 
1,6,28 

 
 

 
 
 

 
 

 
 
 
 

 
 

Figure 3.14.�Damage progression of driver/driven tooth 28 for experiment 3. 
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Figure 5.5.—Data from experiment 1 illustrating load and shutdown effects.
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Figure 5.6.—Vibration, ODM, and damage data from experiment 1.
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Figure 3.15.�Data from experiment 1 illustrating load effects. 
                 

Figure 3.16.�Vibration, ODM, and damage data from experiment 1.        
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Figure 5.7.—Vibration, ODM, and damage data from experiment 1.
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Reading number = run time, min

Figure 5.8.—Data from experiment 2 illustrating shutdown and load effects.
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Figure 3.17.�Vibration, ODM, and damage data from experiment 1.          

Figure 3.18.�Data from experiment 2 illustrating load effects. 
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Figure 5.9.—Vibration, ODM, and damage data from experiment 2.
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Figure 5.10.—Data from experiment 3 illustrating shutdown and load effects.
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Figure 3.19.�Vibration, ODM, and damage data from experiment 2.        

Figure 3.20.�Data from experiment 3 illustrating load effects. 
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Figure 5.11.—Vibration, ODM, and damage data from experiment 3.
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Results from Experiment 1 are plotted in Figures 3.15 to 3.17. Figure 3.15 shows 

the effect of the rig restarts after shutdowns on NA4 by the NA4 magnitude spikes that 
occur after shutdowns. Figures 3.16 and 3.17 indicate damage occurred just prior to 
inspection at reading 14369. Inspection at reading 14369 indicated destructive pitting first 
occurred on driver and driven tooth 6. The progression of damage is detailed in Table 3.1 
and Figure 3.12. NA4 and FM4 both indicate an increase in magnitude when it appears 
destructive pitting occurred. NA4 Reset, like FM4, is less sensitive to damage as it 
progresses to a number of teeth and becomes more severe. 

Figures 3.18 and 3.19 show plots of data obtained from experiment 2. Damage 
progression is shown in Table 3.2 and Figure 3.13. Destructive pitting occurred on driven 
tooth 11 prior to inspection at reading 2199. From Figure 3.18, FM4 and NA4 both 
indicate and increase in magnitude at approximately reading 1700. As seen previously, 
both become less sensitive to damage as it progresses.  

Results from experiment 3 are plotted in Figures 3.20 and 3.21. Damage 
progression is shown in Table 3.3 and Figure 3.14. Destructive pitting occurred on driver  
and driven teeth 1 and 28 prior to inspection at reading 2669. From Figure 3.21, FM4 and 
NA4 both indicate an increase in magnitude prior to inspection at reading 2669 and 
become less sensitive to damage as it progresses.  

As seen in Figures 3.15 to 3.21, NA4 does react to pitting damage. However, 
some of the response magnitude is lost with the reset operation. NA4 reset does increase 
the stability of the NA4 parameter thus enabling it have a more consistent threshold limit. 
This is a key factor in reducing false alarm rates.  

The goal of this part of the research was to define relevant meaningful vibration 
features prior to integration into a health monitoring system. During the preliminary 
evaluation, it was found that one of the selected vibration algorithms, NA4, does not 
perform well under varied load conditions. In order to maintain the integrity of this 

Figure 3.21.�Vibration, ODM, and damage data from experiment 3.        
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algorithm, a new algorithm was developed to minimize the effect of load, while 
maintaining its sensitivity to pitting damage. This new algorithm is referred to as NA4 
Reset. Results indicate NA4 Reset is no longer sensitive to load changes, but is still 
sensitive to pitting damage (Dempsey and Zakrajsek (2001)). Both NA4 Reset and FM4 
indicate when destructive pitting occurs on one gear tooth. NA4 Reset, like FM4, is less 
sensitive to damage as it progresses to a number of teeth and increases in severity. The 
magnitude of NA4 Reset is less than NA4 when pitting damage occurs, requiring a 
smaller threshold limit to indicate pitting damage. However, the magnitude of NA4 Reset 
is significantly larger than FM4 when pitting damage begins to occur. All NA4 data 
collected for the purpose of this research were recalculated to NA4 Reset prior to 
integration.  
 
3.1.4   Oil Debris Feature 
 

Part of this research project was to identify the best feature for detecting gear 
pitting damage from a commercially available on-line oil debris sensor. This was done 
using oil debris data collected from 9 experiments with no damage and 8 with pitting 
damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was 
performed on this data. Damage progression data (video images) were also collected 
from 6 of the experiments with pitting damage. During each test, data from an oil debris 
sensor were monitored and recorded for the occurrence of pitting damage. The data 
measured from the oil debris sensor during experiments with damage and with no 
damage were used to identify membership functions to build a simple fuzzy logic model. 
Using fuzzy logic techniques and the oil debris data, threshold limits were defined that 
discriminate between stages of pitting wear.  

The oil debris sensor records counts of particles in bins set at particle size ranges. 
The particle size is measured in microns. For these experiments, 16 bins were defined. 
The range of the bin sizes in microns is shown in Table 3.4. Based on the bin 
configuration, the average particle size for each bin is used to calculate the cumulative 
mass for the experiment. This average particle size for each bin is also listed in Table 3.4. 
The shape of the particle is assumed to be a sphere with a diameter equal to the average 
particle size.  An approximate density of 7922 kg/m3  is used to calculate the accumulated 
mass.  

 
TABLE 3.4 

Oil debris particle size ranges 
Bin Bin range, 

µm 
Average Bin Bin range, 

µm 
Average 

1 125–175 150 9 525–575 550 
2 175–225 200 10 575–625 600 
3 225–275 250 11 625–675 650 
4 275–325 300 12 675–725 700 
5 325–375 350 13 725–775 750 
6 375–425 400 14 775–825 800 
7 425–475 450 15 825–900 862.5 
8 475–525 500 16 900–1016 958 
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Experiments 1 to 6 were performed with pitting damage and the video inspection 
system installed on the rig. Table 3.5 lists the reading numbers when inspection was 
performed and the measured oil debris mass at this reading. The highlighted cells for 
each experiment identify the reading number and the mass measured when destructive 
pitting was first observed on one or more teeth. As can be seen from this table, the 
amount of mass measured varied significantly for each experiment. The amount of 
damage to the gear teeth also varied significantly. For example, destructive pitting was 
observed on 2 teeth for experiment 1, and 4 teeth for experiment 3, yet the debris 
measured during experiment 3 was significantly lower than the debris measured during 
experiment 1. This was due to different levels of wear and initial pitting that were 
distributed on the teeth but were difficult to measure quantitatively using the video 
inspection system.  

Experiments 7 and 8 were performed with visual inspection and both experiments 
had  pitting damage. Table 3.6 lists the reading numbers when inspection was performed 
and the measured oil debris mass at this reading. Only initial pitting occurred during 
experiment 7. Initial pitting was observed at reading 5181 for experiment 8, and 
destructive pitting at reading 5314.  

Experiments 9 to 17, wherein no damage was observed at test completion, are 
listed in Table 3.7. At the completion of experiment 10, 5.453 mg of debris was 
measured, yet no damage occurred. This is more than the debris measured during 
experiment 7 (3.381 mg) when initial pitting was observed. This and observations made 
from the data collected during experiments when damage occurred made it obvious that 
simple linear correlations could not be used to obtain the features for damage levels from 
the oil debris data.  

 
 

TABLE 3.5 
Reading Numbers and Oil Debris Mass at Video Gear Inspection. 

Experiment 
1 

Experiment 
2 

Experiment 
3 

Experiment 
4 

Experiment 
5 

Experiment 
6 

Rdg# Mass 
(mg) 

Rdg# Mass 
(mg) 

Rdg# Mass 
(mg) 

Rdg# Mass 
(mg) 

Rdg# Mass 
(mg) 

Rdg# Mass 
(mg) 

60 1.003 1573 3.285 58 0 64 0 62 0 60 0 
120 1.418 2199 8.934 2669 8.69 150 2.233 1405 4.214 2810 3.192 

1581 5.113 2296 16.267 2857 11.889 378 8.297 2566 7.413 2885 6.396 
10622 12.533 2444 26.268 3029 14.148 518 9.462 4425 10.811 2957 8.704 
14369 15.475     2065 12.132   9328 11.692 
14430 22.468     2366 13.977   12061 14.365 
14512 24.586     3671 17.361   12368 22.851 
14688 28.451     4655 23.12     
14846 30.686     4863 26.227     
15136 36.108           
*Note:  Highlighted cells identify reading and mass when destructive pitting was first observed 
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TABLE 3.6  

Oil Debris during experiments 
 with visual inspection. 

Experiment 
7 

Experiment 
8 

Rdg# Mass, 
mg 

Rdg# Mass, 
mg 

Pitting Damage 

13716 3.381 5181 6.012 Initial  
  5314 19.101 Destructive 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Prior to discussing methods for feature extraction, it may be beneficial for the 
reader to get a feel for the amount of debris measured by the oil debris sensor and the 
amount of damage to one tooth. Applying the definition of destructive pitting, 25 percent 
of contact surface area for one tooth for these experiments is approximately 0.04322 cm2. 
A 1/64 in. (0.0397 cm) diameter pit, assumed spherical in size is equivalent to 0.26 mg 
oil debris mass. This mass is calculated based on the density used by the sensor software 
to calculate mass. If 0.0397cm diameter pits densely covered 25 percent of the surface 
area of 1 tooth, it would be equivalent to approximately 9 mg. Unfortunately, damage 
distribution is not always densely distributed on 25 percent of a single tooth, but is 
distributed across many teeth making accurate measures of material removed per tooth 
extremely difficult. But, this calculated value can be used as a simple rule of thumb to get 
a feel for the amount of debris and damage based on the gear size. 

Several predictive analysis techniques were reviewed to obtain the best feature to 
predict damage levels from the oil debris sensor. One technique for detecting wear 
conditions in gear systems is by applying statistical distribution methods to particles 
collected from lubrication systems (Roylance (1989)). In this reference, mean particle 
size, variance, kurtosis, and skewness distribution characteristics were calculated from oil 
debris data collected off-line. The wear activity was determined by the calculated size 
distribution characteristics of this off-line oil debris data. In order to apply this data to on-
line oil debris data, calculations were made for each reading number for each bin (Table 
3.4) using the average particle size and the number of particles for each of the sixteen 
bins. Mean particle size, relative kurtosis, and relative skewness were calculated for each 

TABLE 3.7 
Oil Debris at completion of experiments with no damage. 

Experiment  Readings Oil Debris  
Mass (mg) 

9 29866 2.359 
10 20452 5.453  
11 204 0.418 
12 15654 2.276 
13 25259 3.159 
14 5322 0 
15 21016 0.125 
16 380 0.099 
17 21066 0.064 
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reading for 6 of the experiments with pitting damage. Appendix B discusses the statistical 
distribution of wear debris and shows plots of this data for experiment 2 and 3. It was not 
possible, however, to extract a consistent feature that increased in value from the data for 
all experiments. This may be due to the random nonlinear distribution of the damage 
progression across all 56 teeth. For this reason a more intelligent feature extraction 
system, applied to the oil debris mass measured by the oil debris sensor, was analyzed 
and will be discussed in the following paragraphs.  

When defining an intelligent feature extraction system, the gear states that one 
plans to predict must be defined. Due to the overlap of the accumulated mass features, 
three primary states of the gears were identified: O.K (no gear damage); Inspect (initial 
pitting); Shutdown due to Damage (destructive pitting).  The data from Table 3.5 was 
plotted in Figure 3.22. Each plot is labeled with experiment number 1 to 6. The triangles 
on each plot identify when the inspections were performed. The encircled triangles 
indicate the reading number when destructive pitting was first observed. The background 
color indicates the O.K., Inspect state, and Damage states. The overlap between the states 
is also identified with a different background color.  

The changes in state for each color range were defined based on data shown in 
Tables 3.5 to 3.7 The minimum debris measured during experiments 1 to 6 when 
destructive pitting was first observed was 8.69 mg during experiment 3 and the maximum 
was 15.475 mg during experiment 1. The minimum and maximum debris measured 
during experiments 1 to 6 when destructive pitting was first observed were used to define 
the upper limit of the inspect scale and the lower limit of the damage scale. The 
maximum amount of debris measured when no damage occurred (experiment 10) was 
above the minimum amount of debris measured when initial pitting occurred (experiment 
7). This was used as the lower limit of the inspect state. The next largest mass measured 
when no damage occurred (experiment 13) was used as the upper limit of the O.K. scale. 

Fuzzy logic was used to extract an intelligent feature from the accumulated mass 
measured by the oil debris sensor. Refer to section 3.2.2 for a detailed description of 
fuzzy logic analysis and terminology.  Membership values based on the accumulated 
mass measured by the oil debris sensor were identified in Figure 3.23. Membership 
values are defined for the 3 levels of damage: damage low (DL), damage medium (DM), 
and damage high (DH). Using the Mean of the Maximum (MOM) fuzzy logic 
defuzzification method, the oil debris mass measured during the 6 experiments with 
pitting damage was input into a simple fuzzy logic model created using commercially 
available software (Fuzzy Logic Toolbox (1998). The output of this model is shown on 
the Y-axis of Figure 3.24. The background color indicates the O.K., Inspect, and Damage 
states. From this simple fuzzy logic model, threshold limits for the accumulated mass are 
identified for future tests in the Spur Gear Fatigue Test Rig. Results indicate accumulated 
mass combined with fuzzy logic analysis techniques is an effective predictor of pitting 
damage on spur gears (Dempsey (2001)).  

This approach has several benefits over using the accumulated mass and an 
arbitrary threshold limit for determining if damage has occurred. One advantage is that it 
eliminates the need for an expert diagnostician to analyze and interpret the data, since the 
output would be one of three states, O.K., Inspect, and Shutdown due to Damage. Since 
benign debris may be introduced into the system, due to periodic inspections, setting the 
lower limit to above this  debris level  will  minimize  false alarms.    In addition to this, a 



NASA/TM�2003-211307 39 

 
 
 
 

0

5

10

15

20

25

30

35

40

0 2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000

Reading number

O
il

 D
e
b
ri

s 
M

a
ss

, 
m

g

6

1

2

3

4

5

Damage

Inspect

O.K.

 
 
 
 
 

 
 
 
 
 

Figure 8.2.—Membership values for levels of damage.
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Figure 3.22.�Oil debris mass at different damage levels.                  

Figure 3.23.�Membership values for levels of damage.                  
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more advanced system can be designed with logic built-in to minimize these operational 
effects. 

 
3.2  Data Analysis 
  
3.2.1  Data Fusion Analysis 
 

Multisensor data fusion is the process chosen to integrate oil debris and vibration 
based gear damage detection techniques into an intelligent health monitoring system. 
Multisensor data fusion is how humans use multiple senses (seeing, hearing, etc.) to make 
decisions about their surroundings. The International Society of Information Fusion 
defines information fusion as, �the theory, techniques and tools conceived and employed 
for exploiting the synergy in the information acquired from multiple sources such that the 
resulting decision or action is in some sense better than that would be possible if any of 
these sources were used individually� (Dasarathy (2001)). Data fusion methodology was 
the logical choice for integrating vibration and oil based measurement technologies for 
intelligent machine health monitoring 

Since in many applications, the information to fuse comes from different sources, 
the data fusion process includes many disciplines including signal processing, statistics, 
artificial intelligence, cognitive psychology, and information theory. Many diagnostic 
tools exist to detect damage to gears. Individual tools have strengths and weaknesses for 
detecting damage in different environments. Combining these strengths has the potential 
to improve the reliability of the monitoring system. When good sensor information is 
used, combining multiple sensors to make decisions produces improved detection 
capabilities, decreased ambiguity, and increased probability an event is detected 
(Hall and Llinas (1997); and Hall (1992, 1999b)). 

Figure 3.24.�Output of fuzzy logic model.                  
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 Although data fusion techniques have been used extensively in the military for 
target tracking and automated identification of targets, application of data fusion to 
condition-based maintenance has been limited to the past few years. One research paper 
applied this technique to vibration data collected from eight accelerometers installed on a 
Chinook CH-46 helicopter for fault classification (Erdley and Hall (1998)). Results of 
this initial research indicate an improvement when using multisensor decision level 
fusion techniques over single sensor processing. 

There are several benefits of using sensor fusion instead of single sensor limits. 
Most notably, a more robust operational performance and extended spatial/temporal 
coverage is possible since one sensor can contribute information while others are 
unavailable or lack coverage of the event. For example, in a geared system, although the 
oil debris sensor is a good predictor of pitting damage, its ability to detect a cracked tooth 
has not been verified, where vibration sensors often detect cracked teeth effectively. 
Another benefit is increased confidence because more than a single sensor can confirm 
the same target or event thereby increasing assurance of its detection (Waltz (1986)).  
 Automated data fusion processes are used to aid human decision making by 
refining and reducing the quantity of information the systems operators need to examine 
in order to achieve timely, robust and relevant assessment of the situation. Data are 
combined or fused to refine state estimates and predictions. 

Data fusion levels are convenient methods to categorize data fusion functions. 
How a specific process is performed is dependent on individual systems requirements. 
There is a large amount of flexibility in the approach the analyst selects including hybrid 
or adaptive user-defined data fusion approaches (Steinberg, et al. (1999)). Flexibility also 
exists when defining where in the process to fuse the information.   

Sensor data can be fused at the raw data level, feature level, or decision level 
(Garga and Hall (1999b)). These three choices for fusing multisensor data for this 
application will be discussed.  The first choice is direct fusion of raw sensor data.  Fusion 
at the raw data level was not selected for this application because different types of 
sensors were used that required different formats and sampling rates. The second choice, 
feature level fusion, is to represent the sensor data into features, then to fuse these 
features. The features are combined into a single parameter.  Faults are identified by 
observing changes in the signature of this parameter.  Although features were obtained 
individually for the vibration and oil debris measurement technologies, FM4, NA4, and 
oil debris mass, feature level fusion was not chosen due to several reasons.  Feature level 
fusion is best applied to the same types of measurement technologies.  Decisions are 
made based on classification of a priori knowledge. Combining vibration and oil debris at 
the feature level limits the flexibility of this analysis to these 3 features.  It does not 
provide the flexibility of parallel processing other features in the fusion process.   
Decision level fusion processes each sensor to achieve decisions, then combines the 
decisions. The third choice, decision level fusion was chosen to integrate these features. 
The input data is fused at the decision level. Decision level fusion was chosen because 
this does not limit the fusion process to a specific feature. By performing fusion at the 
decision level, new features can be added to the system or different features can be used 
without changing the entire analysis. This allows the most flexibility when applying this 
process to other condition based systems since, in most cases, different sensors and post-
processing methods are used.  
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One of the reasons the application of data fusion methodology had not been 
widely applied to different applications was due to the lack of consistent data fusion 
terms. To remedy this, the U.S. Department of Defense (DoD) Joint Directors of 
Laboratories (JDL) Data Fusion Working Group, established in 1986, developed a data 
fusion model to categorize data fusion related functions (Steinberg, et al. (1999)). The 
model was developed to provide a conceptual framework for the functions required for a 
data fusion process. Their model defines a process to aid in creating a data fusion system 
(Garga and Hall (1999a)). While originally developed for surveillance applications, 
multisensor data fusion techniques can be equally applied to health monitoring as well. 
The architecture developed by the JDL was revised in 1998 and is shown in Figure 3.25 
(Bowman (2001)). The data fusion model shows differences between fusion levels, from 
the source signal level to refinement levels. 

Instead of discussing a generic data fusion model, the data fusion process model 
as applied to health monitoring will be discussed. The data fusion process as applied to 
health monitoring consists of several important elements (Kotanchek (1995)). The first, 
sources of information, relates to the accelerometers and oil debris sensor. The second, 
human computer interaction, relates to the expert information and system states output by 
computer. Sub-object assessment, refers to selecting the most relevant data for the model. 
Level 1 (object assessment), is the processing of data to identify precursors to fault 
conditions. This includes transforming the data to features and states of the geared 
system. Level 2 (situation assessment) is using automated reasoning to develop causal 
inferences such as adjusting the model for operational effects. Level 3 (impact 
assessment) is the development and evaluation of an alternative hypothesis regarding 
 
 
 

  
 
 

Figure 3.25.�JDL data fusion revised model (Bowman (2001)). 
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future events. Level 4 (process refinement) is the monitoring of the data fusion process 
for improvements. An example of the data fusion model applied to damage assessment 
and condition based maintenance was shown in the literature and is reproduced in 
Table 3.8 (Garga and Hall (1999a)). This thesis will focus on Level 1 elements since this 
is the most mature area of the data fusion process. 

The data fusion model used for this application is shown in Figure 3.26. Vibration 
algorithms FM4 and NA4 Reset are extracted from the two accelerometers installed on 
the gearbox housing and through the shaft as previously shown in Figure 2.3. FM4 and 
NA4 Reset were calculated for each sensor. One important step in the data fusion process 
is the preprocessing of the sensor data. This may require the reducing the quantity of data 
and improving the quality of data prior to and during the feature extraction stage. For this 
reason, maximum values of FM4 and NA4 Reset for the two accelerometers were used as 
the features to input into the fuzzy logic system. The maximum values for FM4 and NA4 
Reset were chosen after looking at the level of damage and the values of FM4 and NA4 
Reset using the minimum, the maximum, or the mean. The maximum values of FM4 and 
NA4 Reset for experiments with and without damage had the least amount of variation. 
The accumulated mass measured is used as the feature for the oil debris sensor and will 
be discussed in section 3.1.4, Oil Debris Feature.  

Fuzzy logic membership functions are defined for the identity declaration step. 
The fuzzy logic membership functions identify the damage level on each feature. The 
association step is used to verify the features are related. It is useful for complex systems 
with numerous different sensors positioned at several locations. For this simple 
application, association was implicit. Decision level fusion is then performed integrating  
membership functions with fuzzy logic rules. The output is the state of the gear. Fuzzy 
logic rules and membership functions applied to decision level fusion using a fuzzy logic 
model are discussed in the following section. 

Although data fusion has been successfully applied to many applications, no 
consistent approach currently exists to select data fusion techniques. Work is currently 
underway to develop a generic framework for data fusion problem definition, 
classification, and an application route map (Hannah, et al. (2000)). When this work is 
complete, it may provide alternatives to the data fusion approach chosen for this 
application. Until then, selection is made based on application and user experience. 
 

 

TABLE 3.8: Data fusion model applied to condition-based maintenance.  

(Garga and Hall (1999a)) 
Rotorcraft 
Application 

Sensors Level 1 Level 2 Level 3 

Damage  
Assessment 
 

Accelerometer, 
temperature, 
pressure, strain 

State of sub system; 
location of damaged 
component 

Assess overall 
damage sustained 

Predict effect of damage 
on continued mission and 
operational capabilities 

Condition 
Based 
Maintenance 
 

Accelerometer, 
temperature, 
pressure, oil 
debris 

State of system; location 
of fault  condition 

Operations mode, 
damage detected. 

Predict time to failure of 
critical components under 
ops demands and impact 
on overall Rotorcraft 

Reprinted with permission from the American Helicopter Society.   
Published in the proceedings of the American Helicopter Society 55th Annual Forum 
held in Montreal, Quebec, Canada, May 1999. 
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3.2.2  Fuzzy Logic Analysis 
 

Fuzzy logic is used to identify the damage level on each feature and to perform 
the decision level fusion process on the features. Although other data fusion techniques 
are available, fuzzy logic was chosen based on the results of several studies to compare 
production rules, fuzzy logic and neural nets. One study found fuzzy logic the most 
robust when monitoring transitional failure data on a gearbox (Hall, et al. (1999a)). 
Another study comparing automated reasoning techniques for condition-based 
maintenance found fuzzy logic more flexible than standard logic by making allowances 
for unanticipated behavior (McGonigal (1997)). 

Statistically based algorithms were not chosen for decision level fusion because 
they require large amounts of data to obtain probability inputs to the fusion system.  
Statistical analysis techniques use a priori knowledge about observations to make 
inferences (Luo, et al. (1999)).  Oil debris data for the NASA Glenn Spur Gear Fatigue 
Test Rig did not exist outside the scope of this thesis. The lack of adequate oil debris data 
and the vague knowledge about integration of FM4, NA4 and the oil debris data, made it 
impossible to translate into a probability distribution. Statistical inference requires 
previous likelihood estimates and additional evidence (observations) to determine the 
likelihood of a hypothesis (Hall (1992)). The complexity of the data due to multiple 
hypothesis and multiple conditional dependent events (i.e., different levels of damage 
indicated by each sensor and the resulting different states of the system) made it difficult 
to define levels of probability for each scenario.  The use of Bayesian statistical inference 
for this application is discussed further in Appendix D. 

Figure 3.26.�Decision Level Fusion Model. 
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Fuzzy logic is a system that provides a model for human reasoning that is not 
exact. Fuzzy logic is precise thinking about imprecise sets, used to translate vague 
knowledge into a rule-based system (McGonigal (1997)). Some examples of fuzzy sets 
include tall people, old people, fast cars, and slow computers. Fuzzy logic applies fuzzy 
set theory to data, where fuzzy set theory is a theory of classes with unsharp boundaries. 
The data belongs in a fuzzy set based on its degree of membership (Zadeh (1992)).  

 Fuzzy logic was chosen for this application because it is tolerant of imprecise 
data, is flexible, can model nonlinear functions of arbitrary complexity, and can 
incorporate the experience of experts. Fuzzy logic starts with a fuzzy set, extending 
boolean set theory to a continuous valued logic via the concept of membership functions 
valued between 0 and 1. In fuzzy logic, the truth of any statement becomes a matter of 
degree. Fuzzy logic quantifies the extent that an attribute is imprecise, for example tall 
and short as compared to a precise measurement of height. Where probability quantifies 
the extent to which a precise concept, height, is unknown, fuzzy sets quantify fuzziness 
or imprecise concepts and are used to characterize nonprobabilistic uncertainties (Jang 
and Sun (1995); and Gibson, et al. (1994)). Construction of a fuzzy set depends on 
identification of a suitable universe of discourse (input space), specification of an 
appropriate membership function, and generation of fuzzy rules (Feng (2000)).  

A membership function is a curve that defines how each point in the input space 
is mapped to a membership value or degree of membership between 0 and 1. The input 
space is sometimes referred to as the universe of discourse. The universe of discourse 
refers to all elements of a fuzzy set that come into consideration. The universe depends 
on the context. Every element in the universe of discourse is a member of a fuzzy set to 
some degree. The only condition a membership function must satisfy is that it is a 
continuous function that varies between 0 and 1.  When X is equal to the universe of 
discourse and x are its elements, fuzzy set A in X is defined as a set of ordered pairs: 

 
 X}x)X(x,{A A ∈µ=  (3.6) 
 
where, µA(x) is the membership function of x in A. Each element of X is mapped to a 
membership function value between 0 and 1. 

Fuzzy sets are sets with degrees of membership with gradual transitions from 
membership to nonmembership and the degree of membership is a real number from 0 to 
1. How does one determine the type of membership function to use for a specific 
application? Deciding the type of membership function to use for a specific application is 
subjective and nonrandom as compared to probability theory that deals with objective 
treatment of random phenomena. A few rules of thumb have been listed in the literature 
(Jantzen (1999a) and Jantzen (1999b)). One is that the width of the membership functions 
must be wide enough to allow for noise in the measurement. For example, Figure 3.27 
shows a trapezoidal membership function for two states. The x-axis refers to the feature 
values and the y-axis refers to the degree of membership. Fuzzification looks up the 
degree of membership for the feature value. The feature value must be between the 
minimum (0) and maximum (9) values for a membership function to be defined. If the 
feature value is less than 0, or greater than 9, a membership value is not defined (Feng, 
et al. (2000)). Another rule of thumb is the states require a certain amount of overlap. If a 
gap exists between the states, no rules will fire for values in the gap and the membership 
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function output is undefined.  Referring to Figure 3.27, state 1 and state 2 overlap by a 
value of 3. 

Although membership functions can take many shapes, one recommendation for 
developing new membership functions is to start with triangular shaped membership 
functions (Jantzen (1999b)). Triangular and trapezoidal membership functions have the 
advantage of simplicity, they are formed using straight lines instead of complicated 
equations. The simple formulas required for triangular and trapezoidal membership 
functions and their computational efficiency make them suitable for real-time 
implementation. One benefit of using simple triangular and trapezoidal membership 
functions is the ease of modifying the membership functions for other geared application. 
Work has been done in designing a fuzzy logic system where the rules and membership 
functions remain the same for different systems. The only parameters that need to be 
changed are the input/output scaling factors on the membership functions (Yeh (1999)). 
This approach appeared to be a feasible method for applying membership functions 
developed for the Spur Gear Fatigue Rig to other fatigue rigs by rescaling the 
membership functions. For this reason, triangular and trapezoidal membership functions 
were chosen for this analysis and their specific application will be discussed in the 
following chapters. 

Once membership functions are defined for a fuzzy set, fuzzy rules must be 
defined. Fuzzy rules are defined by experts in the field.  Experts express their field 
knowledge in rules with an IF-THEN format. The developer of vibration diagnostic tool 
NA4 had over 12 years of experience using FM4 in the NASA Glenn fatigue studies. 
Fuzzy rule development was therefore conducted based on the �expert� input from this 
source. At the time of this work, a database of oil debris damage data for the oil debris 
sensor did not exist. The experience gained in this study with the oil debris sensor was 
used for development of fuzzy rules. An example of a fuzzy if-then rule is, �if x is A then 
y is B.� A and B are linguistic values defined by fuzzy sets on universes of discourse X 
and Y. Often �x is A� is called the antecedent or premise and �y is B� is called the 
consequence or conclusion (Feng, et al. (2000)).  A and B are fuzzy sets on a mutual 
universe. The intersection of A and B is defined as: 

 

Figure 3.27.�Fuzzy logic membership functions. 
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 A ∩ B = AND = a min b (3.7)  
 
The union of A and B is defined as: 
 
 A ∪ B = OR = a max b (3.8) 
  
           Fuzzy inference, the process of formulating the mapping from a given input to an 
output using fuzzy logic, provides a basis from which decisions are made. The fuzzy 
system is defined by 3 main components: (1) fuzzy input/output variables defined by 
their fuzzy variables; (2) a set of fuzzy rules; and (3) fuzzy inference mechanism 
(Kasabov (1996)). Mamdani�s fuzzy inference system is the most commonly used fuzzy 
methodology (Mamdani and Assilan (1975)).  It is based on Zadeh�s pioneering paper on 
fuzzy algorithms for decision processes (Zadeh (1973)). In the Mamdani type inference 
systems the output membership functions are fuzzy sets.  The process is detailed below 
and in Figure 3.28: 

1. Fuzzify inputs or fuzzification: converts each piece of input data to degrees of 
membership by a lookup in one of several membership functions. 

2. Apply fuzzy operator: AND = minimum; OR = maximum  
3. Apply implication methods: apply weight to rule; output fuzzy set is truncated and 

scaled.  
4. Aggregate all outputs: aggregation is the process by which fuzzy sets represent 

the outputs of each rule and are combined into a single fuzzy set.  
5. Defuzzify: calculate a single output value from a fuzzy set. Convert fuzzy 

membership information into a crisp output.  
The process described above will be used to define the fuzzy logic model for 

health monitoring of gears. The inputs are the damage detection features, the rules are 
defined based on the expertise of the diagnostician, and the outputs are the states of the 
gears. Several defuzzification methods exist. There is no systematic procedure for 
choosing a defuzzification strategy. The Mean of the Maximum (MOM) defuzzification 
method was chosen because it gave the most plausible results for this application. The 
MOM method finds the output with the maximum membership and takes the x-axis 
average of all points with this maximum membership value. If there is more than one 
point that has maximum degree, the mean of the points are taken. An example for this 
model will be discussed in section 3.3, Feature Validation for Sensor Fusion. 

 
 
 

 
 
 
 

Figure 3.28.�Mamdani�s fuzzy inference system. (Jantzen (1999b)).
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  Commercially available software was used to build the model because it provided 
a convenient method to map an input space to an output space (Fuzzy Logic Toolbox 
(1998)). The chosen software allows the user to create and edit fuzzy inference systems. 
The input space consists of level of damage indicated by the oil debris and vibration 
features oil debris mass, FM4, and NA4 Reset. Membership functions for the features are  
defined as levels of damage. Levels of damage are damage low (DL), damage medium 
(DM), and damage high (DH). 

The levels of damage for each feature are as follows: oil debris mass (DL, DM, 
DH), NA4 Reset (DH, DL), and FM4 (DH, DL). Output space is defined as the state of 
the gear. The three states of the gear are O.K. (no gear damage), inspect (initial pitting), 
and shutdown due to damage (severe destructive pitting). The membership functions for 
each feature will be discussed in detail in the Chapter 4, subchapter 4.1, Assessment of 
Diagnostic Features Integration. 
 
3.3  Feature Validation for Sensor Fusion 
 

The analysis discussed in this section is based on data collected during 24 
experiments, 15 of which had pitting damage occur.  Video inspection images are 
available for 13 of the experiments with pitting damage, 2 were performed prior to 
installation of the video inspection system.  

Table 3.9 is a summary of the experiments performed and a description of the 
damage. The second column lists the reading number the pitting was first observed via 
video or manual inspection. Video inspection was used during Experiments 1 to 6 and 18 
to 24. Manual inspection was used for experiments 7 to 17. The �oil debris� column is the 
amount of debris measured at this reading. The last reading collected for this experiment 
is listed in the fifth column. All gears were visually inspected at test completion and the 
damage description and amount of debris at this time are listed in the last 2 columns. The 
damage description gives the damage observed on the driver (Dr) and driven (Dn) gears. 
Damage is defined as initial pitting (ip), and destructive pitting (de) to the total number of 
teeth for each gear. For example, Dr: de 3t, ip allt, is driver gear had destructive pitting 
on 3 teeth and initial pitting on all of the teeth. A detailed description of the damage to 
each tooth was correlated with the video images for each experiment. Detailed damage 
descriptions for the experiments with damage (experiments 1 to 8 and 18 to 24) are 
shown in Tables 3.10 to 3.24.  The damage progression images of one damaged tooth for 
experiments 1 to 8 and 18 to 24 are shown in Figures 3.6, 3.9, 3.12 to 3.14, and 3.29 to 
3.38.  The table listing the amount of debris at test completion for experiments 9 to 17 
with no damage was shown in section 3.1.4, Table 3.7. The damaged tooth chosen for 
each experiment to display in the figures is identified in bold in the damage description 
tables. As mentioned previously, damage is shown on less than half of the tooth because 
the test gears are run offset to provide a narrow effective face width to maximize gear 
contact stress. As can be seen from the tables and images, the amount of damage to the 
gear teeth and the mass of debris measured varied significantly for each experiment.  The 
video inspection system was used to minimize subjective observations of the damage to 
the tooth.  
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TABLE 3.9 
Summary of Experiments 

Experiment 
Number 

Rdg Pitting 
1st 

 Observed 

Damage 
Description 

Oil 
Debris 
(mg) 

Rdg at  
Test 

Completion 

Damage 
Description 

Oil  
Debris 
(mg) 

1 14369 Dr: de 1t 
Dn: de 1t 

15.475 15136 Dr: de 3t, ip allt 
Dn: de3t 

36.108 

2 2199 Dr: 
Dn: de 1t 

8.934 2444 Dr: de 2t, ip allt 
Dn de 3t, ip 3t 

26.268 

3 2669 Dr: de 2t 
Dn: de 2t 

8.690 3029 Dr: de 3t, ip allt 
Dn: de 3t, ip3t 

14.148 

4 2065 Dr: de 3t 
Dn:  

12.132 4863 Dr: de 7t, ip allt 
Dn de 3t, ip allt 

26.227 

5 2566  Dr: ip 2t 
Dn: 

7.413  4425 Dr: de 11t, ip allt 
Dn de 10t, ip allt 

10.811 

6 12061 Dr: 
Dn: de 1t 

14.365 12368 Dr: de 1t, ip allt 
Dn de 2t, ip allt 

22.851 

7    13716 Dr: ip 1t 
Dn ip 1t 

3.381 

8 5181 Dr: ip 2t 
Dn: ip 3t 

6.012 5314 Dr: de 6t, ip8t 
Dn de6t, ip7t 

19.101 

9    29866 No damage 2.359 
10    20452 No damage 5.453 
11    204 No damage .418 
12    15654 No damage 2.276 
13    25259 No damage 3.159 
14    5322 No damage 0 
15    21016 No damage .125 
16    380 No damage .099 
17    21066 No damage .064 
18    888 Dr: de 6t, ip allt 

Dn de 4t, ip allt 
22.541 

19    199 Dr: de 3t, ip allt 
Dn de 1t, ip allt 

11.230 

20    1593 Dr: de 1t, ip allt 
Dn  ip allt 

5.346 

21 
 

317 Dr: de 1t 
Dn: de 1t 

4.04 514 Dr: de 2t, ip allt 
Dn: de 2t, ip allt 

17.912 

22 
 

   838 Dr: ip 5t 
Dn: de 3t, ip allt 

7.224 

23 
 

   10688 Dr: de 2t,  ip allt 
Dn: de 1t, ip allt 

6.399 

24 
 

7170 Dr: de 1t 
Dn:  

6.186 7224 Dr: de 1t, ip allt 
Dn: ip allt 

9.681 
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TABLE 3.10 

Damage Description for Experiment 1 
Reading Number 
Run Time (min) 

Damage Description Teeth damaged 
on Driver Gear 

Teeth damaged 
on Driven Gear 

Oil Debris  
Mass (mg) 

60 Run-in Wear All All 1.003 
120 Wear All All 1.418 

1581 Wear All All 5.113 
10622 Wear All All 12.533 

 
14369 

Wear 
Destructive Pitting 

All   
6 

All   
6 15.475 

 
14430 

Wear 
Destructive Pitting 

All   
6 

All   
6 22.468 

 
14512 

Wear 
Destructive Pitting 

All   
6,7 

All   
6,7 24.586 

 
14688 

Wear 
Destructive Pitting 

All   
6,7 

All   
6,7 28.451 

 
14846 

Wear 
Destructive Pitting 

All   
6,7 

All   
6,7 30.686 

 
15136    

Wear 
Initial Pitting 

Destructive Pitting 

All teeth 
All teeth 

6,7,8 

All teeth 
 

6,7,10 36.108 
 
 

TABLE 3.11 
Damage Description for Experiment 2 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

1573 Run-in Wear All All 3.285 
 

2199 
Wear 

Destructive Pitting 
All   

  
All   
 11 8.934 

 
2296 

Wear 
Destructive Pitting 

All   
  

All   
 10, 11 16.267 

 
2444 

Wear 
Initial Pitting 

Destructive Pitting 

All   
 All  

10,11 

All   
 10, 11, 14 
10,11,14 26.268 

 
 

TABLE 3.12 
Damage Description for Experiment 3 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

58 Run-in Wear All All 0 
 

2669 
Wear 

Destructive Pitting 
All   

1,28  
All   

 1,28 8.69 
 

2857 
Wear 

Destructive Pitting 
All   

1,6,28  
All   

 1,6,28 11.889 
 

3029 
Wear 

Initial Pitting 
Destructive Pitting 

All   
All 

1,6,28 

All   
 1,6,28 
1,6,28 14.148 
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TABLE 3.13 
Damage Description for Experiment 4 

Reading Number 
Run Time (min) 

Damage Description Teeth damaged 
on Driver Gear 

Teeth damaged 
on Driven Gear 

Oil Debris  
Mass (mg) 

64 Run-in Wear All All 0 
150 Wear All All 2.233 
378 Wear All All 8.297 
518 Wear All All 9.462 

2065 Wear 
Destructive Pitting 

All 
3,6,7 

All 
12.132 

 
2366 

Wear 
Destructive Pitting 

All 
3,6,7 

All 
13.977 

 
3671 

Wear 
Destructive Pitting 

All 
3,6,7 

All 
5 17.361 

 
4655 

Wear 
Destructive Pitting 

All 
3,6,7 

All 
3,5,7 23.12 

 
4863 

Wear 
Initial Pitting 

Destructive Pitting 

All 
All 

3,6,7,11,14,16,28 

All 
All 

3,5,7 26.227 
 

 
 
 
 
 

 
 Figure 3.29.�Damage progression of driver/driven tooth 7 for experiment 4 
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TABLE 3.14 
Damage Description for Experiment 5 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

62 Run-in Wear All All 0 
1405 Wear All All 4.214 

 
2566 

Wear 
Destructive Pitting 

All 
17,25 

All 
7.413 

 
4425 

Wear 
Initial Pitting 

Destructive Pitting 

All 
All 

1,3,17,18,19,20,  
21,24,25,26,28 

All 
All 

1,17,18,19, 20, 
21,22,24,25,26 10.811 

 
 
 
 

 
 
 
 

 
Figure 3.30.�Damage progression of driver/driven tooth 26 for experiment  5 
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TABLE 3.15 

Damage Description for Experiment 6 
Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

60 Run-in Wear All All 0 
2810 Wear All All 3.192 
2885 Wear All All 6.396 
2957 Wear All All 8.704 
9328 Wear All All 11.692 

 
12061 

Wear 
Destructive Pitting 

All All 
22 14.365 

 
12368 

Wear 
Initial Pitting 

Destructive Pitting 

All 
All 
25 

All 
All 

22,25 22.851 
 

 
 
 
 
 
 

 
 Figure 3.31.�Damage progression of driver/driven tooth 22 for experiment 6 
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TABLE 3.16 
Damage Description for Experiment 7 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear 

Oil Debris  
Mass (mg) 

 
13716 

 
Initial Pitting 

 
12 

 
12 

 
3.381 

 
 

 
 
 
 
 
 
 
 
 

 
TABLE 3.17 

Damage Description for Experiment 8 
Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

 
5181 

Initial Pitting 
Destructive Pitting 

15, 16 15,16, 17  
6.012 

 
5314 

Initial Pitting 
Destructive Pitting 

19,24, 27 
9,15,16,17,18, 24 

14 
9,15,16,17,18, 24 

 
19.101 
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TABLE 3.18 
Damage Description for Experiment 18 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

60 Run-in Wear All All 0 

 
888 

Wear 
Initial Pitting 

Destructive Pitting 

All 
All 

5,6,7,11,25,27 

All 
All 

5,6,7,11 22.541 
 
 
 
 
 
 
 

 
 
 Figure 3.32.�Damage progression of 

driver/driven tooth 7 for experiment 18. 
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TABLE 3.19 
Damage Description for Experiment 19 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

62 Run-in Wear All All 0 

199 

Wear 
Initial Pitting 

Destructive Pitting 

All 
All 

3, 4, 13 

All 
All 
3 11.230 

 
 

 
 
 

 
 
 Figure 3.33.�Damage progression of 

driver/driven tooth 3 for experiment 19 
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TABLE 3.20 
Damage Description for Experiment 20 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

66 Run-in Wear All All 0 

 
1593 

Wear 
Initial Pitting 

Destructive Pitting 

All 
All 
26 

All 
All 

5.346 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3.34.�Damage progression of 
driver/driven tooth 26 for experiment 20 
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TABLE 3.21 
Damage Description for Experiment 21 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

62 Run-in Wear All All 0 
 

317 
Wear 

Destructive Pitting 
All 
22 

All 
22 4.04 

 
373 

Wear 
Destructive Pitting 

All 
22,24 

All 
22,24 9.808 

 
455  

Wear 
Destructive Pitting 

All 
22,24 

All 
22,24 10.936 

 
514 

Wear 
Initial Pitting 

Destructive Pitting 

All 
All 

22,24 

All 
All 

22,24 17.912 
 
 
 
 
 

 
 
 
 
 
 

Figure 3.35.�Damage progression of driver/driven tooth 22 for experiment 21 
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TABLE 3.22  
Damage Description for Experiment 22 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

129 Run-in Wear All All 0 

 
838 

Wear 
Initial Pitting 

Destructive Pitting 

All 
12,14,18,19,26 

 

All 
All 

18, 19, 26 7.224 
 
 
 
 

 
 

 
 
 

 
 

Figure 3.36.�Damage progression of 
driver/driven tooth 18 for experiment 22 
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TABLE 3.23 
Damage Description for Experiment 23 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

62 Run-in Wear All All 0 

 
10688 

Wear 
Initial Pitting 

Destructive Pitting 

All 
All 

10,11 

All 
All 
10 6.399 

 
 
 
 
 
 
 

 
 

Figure 3.37.�Damage progression of driver/driven tooth 10 for experiment 23 
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TABLE 3.24 
Damage Description for Experiment 24 

Reading Number 
Run Time (min) 

Damage Description Teeth Damaged 
on Driver Gear 

Teeth Damaged 
on Driven Gear  

Oil Debris  
Mass (mg) 

0 Run-in Wear All All 0 
4077 Wear All All 2.344 

 
7170 

Wear 
Destructive Pitting 

All 
26 

All 
6.186 

7224 

Wear 
Initial Pitting 

Destructive Pitting 

All 
All 
26 

All 
All 

 9.681 
 

 
 

 
 

 
 
 
 

 
 

 
 
 

 

Figure 3.38.�Damage progression of driver/driven tooth 26 for experiment 24 
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Fuzzy logic techniques were applied to the oil debris and vibration data in order to 
build a simple data fusion model that predicts when pitting damage occurs on one or 
more teeth. The model was developed to predict three states of the gears: O.K (no gear 
damage); Inspect (initial/destructive pitting); Shutdown due to Damage (severe 
destructive pitting).  

Membership values to use in the fuzzy logic model were defined for the three 
features: oil debris, FM4 and NA4. For the oil debris sensor, membership values were 
based on the accumulated mass and the amount of damage observed on the video images 
and by visual inspection.  Membership values are defined for 3 levels of damage: damage 
low (DL), damage medium (DM), and damage high (DH). The process used to define 
membership functions for the oil debris sensor is discussed in section 3.1.4, Oil Debris 
Feature, and indicates accumulated mass is a good predictor of pitting damage on spur 
gears and fuzzy logic is a good technique for setting threshold limits that discriminate 
between states of pitting wear. The membership values for the oil debris mass are shown 
in Figure 3.23. The membership functions were defined using data collected from 
experiments 1 to 17. 

Membership values were defined for 2 levels of damage for vibration algorithms 
FM4 and NA4 Reset: damage low (DL) and damage high (DH). From observations made 
during experiments with pitting damage, it was found that FM4 and NA4 Reset increase 
in magnitude initially, then decrease as damage progresses. Since damage progression 
could not be detected from the vibration algorithms, only two levels of damage were 
defined for FM4 and NA4 Reset. FM4 and NA4 Reset were calculated for both the 
accelerometer on the shaft and the accelerometer on the housing. It was also determined 
from the experimental data that although FM4 and NA4 Reset were calculated for both 
accelerometers, using the maximum value of the two accelerometers was more reliable 
than using them separately or using the average of the two. And, since the magnitude of 
NA4 Reset was significantly larger than FM4 when pitting damage began to occur, 
different membership functions were defined for each algorithm.  

The maximum FM4 values for experiments when damage occurred between 
inspection intervals are shown in Tables 3.25 and 3.26. The maximum FM4 values for 
experiments when no damage occurred are listed in Table 3.27. Membership values 
defined for the 2 levels of damage for FM4 are shown in Figure 3.39. The damage low 
membership function X,Y coordinates [0, 1; 4.04, 1; 7.68, 0], and damage high 
membership function X,Y coordinates [4.04, 0; 7.68, 1; 10, 1], were defined by plotting 
and analyzing the data in Tables 3.25 and 3.26. Trial and error was used to determine the 
coordinates that minimized false alarms and decreased missed hits. Due to the 
insensitivity of FM4 to damage progression, logic was also programmed into the model 
to freeze FM4 when it exceeded 7.68. 

The maximum NA4 Reset values for experiments when damage occurred between 
inspection intervals are shown in Tables 3.28 and 3.29. The maximum NA4 Reset values 
for experiments when no damage occurred are listed in Table 3.30. It should be 
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TABLE 3.25 

Reading Numbers and FM4 Max at Video Gear Inspection  
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 
Rdg# FM4 

Max 
Rdg# FM4 

Max 
Rdg# FM4 

Max 
Rdg# FM4 

Max 
Rdg# FM4 

Max 
Rdg# FM4 

Max 
60  1573 3.52 58  64  62  60  

120 3.68 2199 5.23 2669 4.66 150 3.04 1405 3.63 2810 3.78 
1581 3.53 2296 5.03 2857 5.91 378 3.97 2566 3.10 2885 3.35 

10622 3.75 2444 6.09 3029 3.86 518 2.94 4425 4.04 2957 3.29 
14369 4.39      2065 3.07   9328 3.76 
14430 8.41     2366 4.19   12061 3.66 
14512 7.37     3671 2.94   12368 4.13 
14688 7.21     4655 5.64     
14846 7.16     4863 5.49     
15136 7.01           

*Note:  Highlighted cells identify reading and mass when destructive pitting was first observed 
 
 
 
 

TABLE 3.26 
FM4 max during experiments 

with visual gear inspection   
Experiment 7 Experiment 8 
Rdg# FM4 

Max 
Rdg# FM4 

Max 
13716 7.68 5314 9.90

 
 
 
 

TABLE 3.27 
FM4 max at completion of 

experiments with no damage 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experiment  Readings FM4 Max 
9 29866 7.36 

10 20452 4.61 
11 204 3.78 
12 15654 4.18 
13 25259 7.60 
14 5322 5.05 
15 21016 5.21 
16 380 3.54 
17 21066 5.17 
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noted that a load measurement was not  available during experiments 13 to 17, so NA4 
Reset corrections were not made for these experiments. Membership values defined for 
the 2 levels of damage for NA4 Reset are shown in Figure 3.40. The damage low 
membership function X,Y coordinates [0, 1; 7.36, 1; 12.6, 0], and damage high 
membership function X,Y coordinates [7.36, 0; 12.6, 1; 55, 1], were defined by plotting 
and analyzing the data in Table 3.28. Trial and error was used to determine the 
coordinates that minimized false alarms and decreased missed hits. Due to the 
insensitivity of NA4 Reset to damage progression, logic was also programmed into the 
model to freeze NA4 Reset when it exceeded 12.60.  

Due to the findings of this experimental research, post processing was required on 
the data prior to inputting the data into the fuzzy logic membership functions. These 
modifications were performed on the experimental data to improve the integrity of the 
individual features prior to data fusion. A block diagram showing the preprocessing 
performed on the oil debris and vibration data collected during these experiments is 
shown on Figure 3.41.  

The inputs to the fuzzy system are the membership functions discussed in the 
preceding paragraphs. The degree of membership for the output of the fuzzy model is 
shown in Figure 3.42 with the output status or state of the gear: O.K (no gear damage); 
Inspect (initial pitting); Shutdown due to damage (destructive pitting). The output was 
defined to give the end user a simple function based on the state of the gear. A value of 0 
to 0.33 indicates the gear is O.K., 0.33 to 0.66 indicates the gear should be inspected, and 
0.66 to 1.0 indicates shutdown the system, the gear is damaged. The rules defined for the 
model are listed in Table 3.31. A simple interpretation of one of the rules is as follows: 

Figure 3.39.�Membership values for FM4 feature 
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TABLE 3.28 

Reading Numbers and NA4 Reset Max at Video Gear Inspection     
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 
Rdg# NA4 

Max 
Rdg# NA4 

Max 
Rdg# NA4 

Max 
Rdg# NA4 

Max 
Rdg# NA4  

Max 
Rdg# NA4 

Max 
60  1573 13.21 58  64  62  60  

120 4.50 2199 20.76 2669 30.60 150 3.72 1405 4.18 2810 6.65 
1581 4.30 2296 7.72 2857 7.16 378 4.88 2566 4.49 2885 3.57 

10622 8.56 2444 7.17 3029 11.38 518 4.92 4425 7.36 2957 4.45 
14369 40.55      2065 4.77   9328 5.03 
14430 9.16     2366 5.82   12061 10.38 
14512 9.19     3671 6.33   12368 6.96 
14688 8.44     4655 12.60     
14846 10.41     4863 2.84     
15136 7.83           

*Note:  Highlighted cells identify reading and mass when destructive pitting was first observed 
 
 
 
 

TABLE 3.29 
NA4 Reset max during experiments 

with visual gear inspection 
Experiment 7 Experiment 8 

Rdg# NA4 
Max 

Rdg# NA4 
Max 

13716 54.03 5314 11.45
 
 
 

TABLE 3.30 
NA4 Reset max at completion of 

experiments with no damage 
 

 
 
 
 
 
 
 
 
 
 
 
 

*Note:  No load corrections to NA4 Reset for experiments 13 to 17. 

Experiment  Readings NA4 Max 
9 29866 14.98 

10 20452 11.62 
11 204 4.82 
12 15654 9.66 
13 25259 40.9 
14 5322 13.1 
15 21016 40.5 
16 380 7.59 
17 21066 8.76 
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for rule 1, if FM4 indicates damage is low, NA4 indicates damage is low, and the oil 
debris indicates the damage is low, then the gear is O.K. Using the membership values 
and rules for the vibration and oil debris features, and the Mean of the Maximum (MOM) 
fuzzy logic defuzzification method, a simple fuzzy logic model was developed. The 
model was defined using the data collected from experiments 1 to 17. The input/output 
data to the fuzzy model for each experiment will be discussed in the following 
paragraphs.  

An example of the membership function outputs when rules are applied or fired is 
shown in Figure 3.43.  The numbers on the left hand side of the figure refer to the rules 1 
through 12 listed in Table 3.31.  The input values and membership functions for FM4, 
NA4, and the oil debris are listed in the first 3 columns.  Based on the inputs for each 
feature (5.5, 27.6, and 20), the rules that are fired are shaded. The last column shows the 
output membership functions and the rules that are fired are shaded.  For example, rule 1, 
�If (FM4 is DL) and (NA4 is DL) and (debris is DL) then (output is O.K)�, no output 
membership functions are fired because the minimum (and) membership functions for the 
3 parameters is zero.  For this example, Rule 2 and Rule 11 fire the shutdown  
membership function in the output.  Since the mean of the maximum defuzzification 
method was chosen, the maximum output membership function of rule 11 is used.  The 
mean of maximum on the x-axis of the output is .935, shown in the last row of the output 
column.   

Figures 3.44 to 3.47 are representative plots for 4 of the 24 experiments. Each 
figure is comprised of 2 plots. The plot on the top is a plot of the 3 features measured 
during each experiment. FM4 and NA4 Reset correspond to the left Y-axis, the 
accumulated mass measured by the oil debris sensor corresponds to the right Y-axis. 
These features are input into the model developed for this research. The plot on the 
bottom is the model output. The triangles on the X-axis correspond to the inspection 
reading numbers. The background colors in different shades indicate O.K., Inspect, and 
Shutdown states.  A short description of Figures 3.44 to 3.47 will follow. 

Figure 3.40.�Membership values for NA4 Reset feature 
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Figure 3.41.�Pre-processing of experimental data prior to input into fuzzy logic model 
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TABLE 3.31 
Rules for Fuzzy Logic Model  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

1. If (FM4 is DL) and (NA4 is DL) and (debris is DL) then (output is O.K) 
2. If (FM4 is DH) and (NA4 is DH) and (debris is DH) then (output is SHUTDOWN) 
3. If (FM4 is DL) and (NA4 is DL) and (debris is DM) then (output is INSPECT) 
4. If (FM4 is DL) and (NA4 is DH) and (debris is DL) then (output is O.K) 
5. If (FM4 is DL) and (NA4 is DL) and (debris is DH) then (output is INSPECT) 
6. If (FM4 is DH) and (NA4 is DL) and (debris is DL) then (output is O.K) 
7. If (FM4 is DH) and (NA4 is DL) and (debris is DM) then (output is INSPECT) 
8. If (FM4 is DH) and (NA4 is DH) and (debris is DL) then (output is INSPECT) 
9. If (FM4 is DH) and (NA4 is DL) and (debris is DH) then (output is SHUTDOWN) 
10. If (FM4 is DH) and (NA4 is DH) and (debris is DM) then (output is INSPECT) 
11. If (FM4 is DL) and (NA4 is DH) and (debris is DH) then (output is SHUTDOWN) 
12. If (FM4 is DL) and (NA4 is DH) and (debris is DM) then (output is INSPECT) 

Figure 3.42.�Output of fuzzy logic model 
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Figure 9.15.—Output of rules for each membership functions.

 
 

Experiment 2 is plotted on Figure 3.44. Destructive pitting was first observed on 
one tooth of the driven gear at reading 2199 and the output plot indicated to inspect the 
gears. As the damage increases, the inspect state changes to the shutdown state for this 
experiment. Experiment 3 is plotted on Figure 3.45. Destructive pitting was first observed 
on two teeth of both the driven and driver gear at reading 2669 and the output plot 
indicates to inspect the gears. As the damage increases, the inspect changes to shutdown 
for this experiment. Experiment 12 is plotted on Figure 3.46.  No signs of pitting were 
observed during this experiment, and the output plot remains in the O.K. region.  
Experiment 8 is plotted on Figure 3.47.  Initial pitting was first observed on 2 driver teeth 
and 3 driven teeth at reading 5181 and the output plot indicates to inspect the gears.  As 
damage increases, inspect changes to shutdown for this experiment. 

Figure 3.43.�Output of rules for each membership function 
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Figure 9.16.—Experiment 2 features and model output.
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Figure 3.44.�Experiment 2 features and model output 
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Figure 9.17.—Experiment 3 features and model output.
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Figure 3.45.�Experiment 3 features and model output 
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Figure 9.18.—Experiment 12 features and model output.

0.0

0.4

0.2

0.6

0.8

1.0

10

8

6

4

2

0

2.5

2.0

1.5

1.0

0.5

0.0
0 4000

Reading number

Reading number

O
D

M
 m

a
ss

, 
m

g

8000 12 000 16 000

0 4000 8000 12 000 16 000

M
o
d
e
l 

O
u
tp

u
t

F
M

4
 a

n
d

 N
A

4
 R

e
se

t
FM4
NA4 Reset
Oil debris

Shutdown

Inspect

O.K.

 
 

  
 
 
 

Figure 3.46.�Experiment 12 features and model output 
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Figure 9.19.—Experiment 8 features and model output.

0.0

0.4

0.2

0.6

0.8

1.0

M
o
d
e
l 

O
u
tp

u
t

20

15

10

5

0

Reading number

Reading number

F
M

4
 a

n
d

 N
A

4
 R

e
se

t

O
D

M
 m

a
ss

, 
m

g

0 2000 40001000 3000 5000 6000

0 2000 40001000 3000 5000 6000

20

15

10

5

0

FM4
NA4 Reset
Oil debris

Shutdown

Inspect

O.K.

 
 

 
 
 

Figure 3.47.�Experiment 8 features and model output 
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Chapter 4 
 

RESULTS AND DISCUSSION 
 

4.1  Assessment of Diagnostic Features Integration 
 

The advantage of integrating the features of different measurement technologies 
into a simple fuzzy logic model is evident from a review of the experimental results of 
this research. The analysis output gives clear information to the end user when making a 
decision based on the data.  The feature integration method developed in this research 
incorporates the expert knowledge of the diagnostician into a system that can be used to 
make clear decisions on the status of the geared system.  

Several observations are worth noting after careful analysis of the data. The first 
is that the oil debris feature was more reliable than the vibration features for detecting 
pitting fatigue failure of spur gears. The vibration features were more sensitive to the 
environment (operational effects, location, sampling rates, etc.) and these sensitivities are 
more difficult to quantify or correct for in the field. The vibration algorithms were chosen 
because the literature had shown they were successful for detecting pitting damage on 
gears (Zakrajsek (1993); Zakrajsek, et al. (1994a); Zakrajsek, et al. (1994b); and 
Zakrajsek, et al. (1995b)). Some literature noted NA4 was affected by load change, but 
the magnitude this effect had on the performance of the algorithm was not discussed 
(Zakrajsek, et al. (1994a); (Zakrajsek, et al. (1995a); and Zakrajsek (1994)). This 
operational effect had to be corrected for in this study to maintain the integrity of this 
algorithm.  NA4 Reset was developed during this research as the result of this operational 
effect. The false alarm rates of NA4 without this correction would be high.  

Another observation is that a technique for setting accurate threshold limits for 
vibration algorithms was not clearly defined in the literature (Zakrajsek (1993); 
(Zakrajsek (1989); Zakrajsek, et al. (1994a); Zakrajsek, et al. (1995a); Zakrajsek (1994); 
and Zakrajsek, et al. (1995b)). Setting thresholds appears to be a trial and error method 
that changes for each experiment and each test rig. This makes it very difficult to quantify 
the false alarms and missed hits using the individual algorithms. If the threshold limits for 
the vibration algorithms are set at any number above the nominal value of 3.0, false 
alarms would dominate (Stewart (1977); Zakrajsek (1993); Zakrajsek (1989); and 
Zakrajsek (1994)). Why is it so difficult to set limits for these algorithms? Due to limited 
damage data, developers of vibration diagnostic methods collect data, then when a failure 
occurs, the diagnostician looks at the data to see if and when the vibration pattern 
changed. Then a few more data sets are run in a controlled environment looking for this 
vibration pattern. A specific limit is not defined, rather the diagnostician has to diligently 
look for a change in the algorithm output that did not previously exist. It is very difficult 
for an end user, who is unfamiliar with the tests conditions, to differentiate between the 
change due to damage as compared to the change due to operational effects.  
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In comparison, the thresholds for this analysis were determined based on 
membership functions defined for 17 experiments with varied operational conditions. The 
process used to define membership functions for the vibration algorithms was an attempt 
to intelligently define threshold limits. Setting thresholds using membership functions is 
an improvement over the current trial and error method, and gives the end user more 
flexibility in defining threshold limits based on levels of damage. However, this method 
also has its limitations in that it requires several sets of damage data to refine the limits. 

Like threshold limits and operational constraints, metrics to quantify 
improvements of new diagnostics tools over existing systems is noticeably absent from 
the literature. This made it very difficult to quantify the improvement of this system over 
current HUMS. The only reference found that refers to the false alarm rate of current 
health monitoring system states false alarms range 1 per 100 flight hours (Stewart 
(1997)). Of the two references found that refer to the damage detection rates of current 
health monitoring system, one states a 60 percent damage detection rate, the other claims 
a 70 percent damage detection rate (Stewart (1997) and Larder (1999)). These references 
do not discuss data collection methods and rates. If data were collected during steady 
state conditions, then the number of false alarms would be lower than the false alarm 
rates under changing operational parameters. Increased frequency of data collection 
increases the damage detection rates but may increase the false alarm rates. 

Because of the limited performance metrics of existing diagnostic tools, 
assessment of the fused system was not a simple task. A simple, conservative approach 
was chosen to quantify the diagnostics benefits of the fused system over the individual 
features. This approach was based on several assumptions:  

1. Focus on missed hits and false alarms for destructive pitting failures. A missed hit 
is when destructive pitting occurs on one or more teeth but was undetected by the 
feature. A false alarm is when destructive pitting did not occur but is indicated by 
the feature.  

2. For the vibration features, only look at the maximum value between inspection 
intervals. In other words, if the maximum value exceeds the limit within an 
inspection period with no damage, only one false alarm occurs per experiment. In 
reality, the feature can exceed its limit numerous times in the inspection interval 
causing many false alarms.  

3. The false alarms and missed hits will only be determined for each experiment, not 
within each experiment.  
First, the performance of the fused features will be discussed.  During 

experiments 1 to 17 used to create the model, destructive pitting damage occurred during 
7 of the experiments.  No false alarms or missed hits occurred during these 7 
experiments.   Experiment 7 was not used in this analysis because only initial pitting 
occurred for this experiment.   One false alarm occurred for the 4 of the experiments with 
no damage.  Only 4 experiments were analyzed because NA4 Reset could not be 
calculated during experiments 13 to 17 because load was not measured during these tests.   

Based on membership function limits of the 16 experiments, a comparison will be 
made between the performance of the fused features, the two vibration features, and the 
oil debris feature.  Refer to Tables 3.5 to 3.7, Tables 3.25 to 3.30, and Figures 3.23, 3.39, 
and 3.40 for the oil debris mass, FM4, and NA4 Reset maximum values during inspection 
intervals. Table 4.1 shows the results of assessing false alarm rates and missed hits for the 
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TABLE 4.1   

Missed Hits and False Alarms 
Experiments with  

Damage 
# 

 
Experiments with 

No Damage 
# 
 

Missed 
Hits 

False 
Alarms 

Feature 
 

Limits 

Missed 
Hits 

False  
Alarms 

 
 

False  
Alarms 

 
 

% % 

FM4 4.04 2 0 7 7 9 29 44 
FM4 7.36 6 0 7 2 9 86 13 

         
NA4 Reset 7.86 2 2 7 3 4 29 45 
NA4 Reset 12.6 4 1 7 1 4 57 18 

         
Oil Debris Mass 5.45 0 4 7 1 9 0 31 
Oil Debris Mass 8.69 0 3 7 0 9 0 19 
Oil Debris Mass 15.47 5 0 7 0 9 71 0 

         
Fused Features  0 0 7 1 4 0 9 

 
 
 
data used to build the model. The first column defines the feature. The second column is 
the limit. If the feature value is greater than or equal to the limit, damage is indicated. The 
third and fourth columns show the number of missed hits and false alarms for the 
experiments with damage. The fifth column is the number of experiments with damage. 
The sixth shows the number of false alarms for experiments with no damage. The seventh 
column shows the number of experiments with no damage. The �missed hits� column 
lists the percentage of missed hits for the 7 experiments with damage. The �false alarm� 
column is the percentage of false alarms based on 16 experiments for FM4 and oil debris 
mass, and 11 experiments for NA4 Reset. From this table, the dilemma faced by the 
facility operator, maintenance person, or pilot is obvious. There is a tradeoff between the 
sensitivity of the system to detect damage and the number of false alarms. If the limit is 
decreased, less missed hits and more false alarms will result and if the limit is increased 
more missed hits and less false alarms will occur. 

How does the performance of the individual features compare to the fused output 
results for these experiments? For the 7 experiments with pitting damage no false alarms 
or missed hits occurred when using the fused output. For the 4 experiments with no 
damage (experiments 9 to 12) 1 false alarm occurred for experiment 10. The fused 
features have the lowest false alarm rate.  The results of this research show the benefit of 
combining two measurement technologies and 3 features using the data set to develop the 
data fusion model. But, the important question is what happens when new data, not used 
to develop the model is used? Can the model continue to detect damage? The 
membership functions were developed based on data collected during experiments 1 to 
17. Experiments 18 to 24 were new data not used for model development. The data 
fusion results of Experiments 18 and 24 are shown in Figures 4.1 and 4.2. The features in 
the plot on the top are displayed on-line during the experiment. The data fusion analysis 
is done during post-processing. The data from these 2 experiments and the other 
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Figure 10.1.—Experiment 18 features and model output.
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Figure 4.1.�Experiment 18 features and model output 
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Figure 10.2.—Experiment 24 features and model output.
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Figure 4.2.�Experiment 24 features and model output 
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7 experiments with damage indicate the rig should be shutdown for inspection or damage. 
No false alarms or missed hits were indicated for these 7 experiments based on the fused 
output.  

This research, focusing on pitting damage, found the oil debris feature more 
reliable than vibration features. But, during one experiment, a tooth cracked on the driven 
gear without warning. Oil debris analysis is unable to detect cracks or fractures that do 
not release significant debris (Astridge (1987)). At test completion, minimal initial pitting 
was barely visible with the naked eye on the other teeth on both the driver and driven 
gear.  The oil debris in the rig increased at the beginning of the test due to an operational 
change, but did not change significantly until after the tooth cracked. Results from crack 
propagation tests in the NASA Glenn Spur Gear Fatigue Rig indicated NA4 reacted to 
fatigue cracks in standard spur gears (Zakrajsek, et al. (1996)). For this reason, NA4 
Reset data was analyzed to determine if it detected the cracked tooth. 

Figure 4.3 is a plot of the vibration and oil debris features with an expanded scale 
near the time the tooth cracked. Referring to Figure 4.3 for analysis of this experiment, 
video inspection was performed at reading 6393 with no pitting visible. At shutdown, 
reading 7148, tooth 18 of the driven gear was cracked. Figure 4.3 shows the vibration 
feature from the video inspection reading until shutdown, and an expanded scale showing 
the two NA4 Reset spikes prior to the debris increase, suggesting that NA4 indicated a 
cracked tooth prior to the debris increasing. The time-synchronous average data were also 
plotted to determine whether the increase in NA4 Reset was attributed to an increase in 
magnitude at this tooth location.  A cracked or broken tooth is often detected in the time 
                

Figure 10.3.—Experiment with cracked tooth.
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                             Figure 4.3.�Experiment with cracked tooth 
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waveform which shows a spike at the once per revolution of the cracked tooth 
(McFadden (1987)). The amplitude at tooth 18 showed a significant increase at 
approximately reading 7061 as compared to previous  readings. This would indicate NA4 
detected the cracked tooth approximately an hour before the oil debris sensor. Since it 
was based on only one data set, this does not prove NA4 Reset is the best method for 
crack detection. It only reinforces the importance of using several different measurement 
technologies for damage detection, to recognize unanticipated failure modes, since all 
have strengths and weaknesses for different applications. 
 
4.2  Application of Data Fusion Method to Other Systems 

 
The work conducted in this study thoroughly characterized the effect spur gear 

pitting fatigue has on vibration algorithms FM4, NA4 Reset and oil debris. The 
diagnostics developed have improved the performance of fatigue tests conducted in the 
NASA Glenn Spur Gear Fatigue Test Rig. Additional data is required to implement this 
system on other systems. Although vibration data has been collected on other systems, oil 
debris mass failure data has been limited to the spur rigs. The oil debris sensor manual 
and other research on ball bearings indicate the debris mass detected is proportional to the 
rolling element diameter and the pitch diameter (Metalscan User�s Manual; Miller and 
Kitaljevich (2000)). Does a gear relationship exist that can be used to modify the oil 
debris membership functions limits when failure data are acquired on other systems?  

Due to the success of oil debris analysis in predicting damage on the Spur Gear 
Fatigue Rigs, an oil debris sensor was installed on the NASA Glenn Spiral Bevel Gear 
Test Facility. Spiral bevel gears are used in helicopter transmissions to transfer power 
between nonparallel intersecting shafts. A detailed description of this test facility can be 
found in Handschuh (1995, 2001). The Spiral Bevel Gear Test Facility is illustrated in 
Figure 4.4.   

The main purpose of this test rig is to study the effects of gear material, gear tooth 
design, and lubrication on the fatigue strength of gears.  The facility uses a closed loop 
torque regenerative system.  Two sets of spiral bevel gears are tested simultaneously.  
Fatigue tests are performed on aerospace quality gears under varying operating 
conditions.  The 12 tooth pinion and 36 tooth gear have 5.14 in. (13.06 cm) diametral 
pitch, 35 degree spiral angle, 1 in. (2.54 cm) face width, 90 degree shaft angle, and 22.5 
degree pressure angle.  Tests are performed for a specified number of hours or until 
surface fatigue occurs. 

Four experiments were performed.  Oil debris data were collected during all four 
experiments from the same type of oil debris sensor used in the spur rig, but a larger size 
(3/4�).  The larger size was required due to the higher oil flow rates in this rig.  The 3/4� 
sensor is less sensitive than the 3/8� used in the spur rig.  This sensor required the bins to 
be reconfigured from 16 to 14 bins with the smallest particle detected at 225 microns.   
The bin sizes are listed in Table 4.2. 

The instrumentation available varied for each of the four experiments due to test 
schedule constraints. For the first and second experiments, an oil debris sensor was 
installed on the rig, but accelerometers were not installed.  For the second experiment, 
damage progression data during the experiment was not collected due to the 
unavailability of the data acquisition system.    The data  for  the  second experiment  was 
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TABLE 4.2 
Oil debris particle size ranges for bevel tests 

Bin Bin range, 
µm 

Average Bin Bin range, 
µm 

Average 

1 225–275 250 8 575–625 600 
2 275–325 300 9 625–675 650 
3 325–375 350 10 675–725 700 
4 375–425 400 11 725–775 750 
5 425–475 450 12 775–825 800 
6 475–525 500 13 825–900 862.5 
7 525–575 550 14 900–1016 958 

 
 

limited to the total accumulated oil debris mass at test completion.   For the third and 
fourth experiments, accelerometers were installed on the right and left pinion shaft 
bearing housings to measure vibration.  The location of the right accelerometer is shown 
in Figure 4.4.  The left accelerometer was placed at the same position on the left side of 
the gearbox. The accelerometers are lightweight, piezoelectric accelerometers, of the 
same type used on the spur gear shaft.  Shaft speed was also measured with the same type 
of optical sensor used in for the spur gear tests.   

The test pinion had 12 teeth with a shaft speed of 10,200 RPM and the gear had 
36 teeth with a shaft speed of 3400 RPM.  The meshing frequency was 2040 
cycles/second.  The shaft speed was measured on the test gear shaft.  For every revolution 
of the test gear, there were three revolutions of the pinion.   Data was sampled for 
100KHz for 2 seconds duration.  Time-synchronous averaging were performed for 113 
revolutions of the test gear. 

Figure 4.4.�Spiral bevel gear fatigue rig. 
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The oil debris mass generated during the first bevel rig experiment with pitting 
damage is shown on Figure 4.5.   At test completion, initial pitting was observed on one 
pinion tooth.  An image of this damage is also shown on Figure 4.5.  Can this amount of 
debris be somehow correlated to the debris measured during spur rig test?  Does a simple 
correlation exist between gear tooth contact area and amount of debris?  If so, it would be 
very easy to change the membership functions of the oil debris feature proportionally for 
different systems.  As discussed in section 3.1.4, Oil Debris Feature, 25% of the tooth 
surface contact area for one spur gear tooth was calculated to get a feel for the amount of 
damage related to gear tooth size.  If .0397 cm diameter pits densely covered the surface 
contact area of one spiral bevel gear tooth, it results in 53.6 mg, which is 5.95 times the 
debris calculated for the spur gears.  This factor was multiplied by the limits defined in 
the oil debris membership functions. Figure 4.6 shows the new membership functions for 
levels of damage for the bevel gears.  Table 4.3 shows the oil debris feature values for the 
spur and bevel rigs. The oil debris mass is input into the oil debris membership function 
and the resulting output is shown in Figure 4.7.  Applying this simple change to the 
membership functions, the model indicates inspection should be performed on the bevel 
gears.  Since initial pitting was first observed at reading 1028 with a mass of 8.771 mg 
measured, these values may have to be adjusted as additional data are collected.  
However, as a rule of thumb, this is a good value to start with when setting oil debris 
damage levels. 
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 Figure 4.5.�Oil debris mass measured during bevel test 1. 
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TABLE 4.3 
Spur rig and bevel rig membership function values 

 
 

DL 
Damage Low 

DM 
Damage Medium 

DH 
Damage High 

Spur Bevel  Spur Bevel  Spur Bevel  
0 0 1 3.159 18.8 0 8.69 51.7 0 

3.159 18.8 1 5.453 32.4 1 15.475 92.1 1 
5.453 32.4 0 8.69 51.7 1 40 238 1 

  15.475 92.1 0   

Figure 4.6.�Bevel rig membership functions for levels of damage. 
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During the second experiment on the bevel rig, the data acquisition system was 
unavailable, but the oil debris sensor monitored the debris that accumulated throughout 
the test.  The experiment lasted 565 minutes. At test completion, 104.3 mg of debris was 
measured.  This includes the run-in debris generated during the test.  Damage occurred on 
both the right and the left pinion.  Figure 4.8 shows the amount of damage to the right 
pinion gear teeth.  Destructive pitting occurred on two teeth.  Figure 4.9 shows the 
amount of damage to the left pinion gear teeth.  Wear marks and the start of initial pitting 
also occurred on one tooth. Looking at the oil debris membership function values shown 
in Figure 4.5, 104.3 mg falls within the Damage High region of the oil debris 
membership function.   

Vibration data and oil debris data were collected for the third bevel experiment.  
FM4 and NA4 Reset were calculated from the vibration data for this experiment.  Since 
FM4 was based on normalized statistical functions, the FM4 membership functions 
developed for the spur gear tests could be applied to this system.  It was not clear if NA4 
Reset membership functions could be used.  NA4 Reset is calculated by correcting for 
load fluctuations.  When a 10% load fluctuation occurred during spur rig tests, the 
denominator for NA4 was reset.  The vibration data collected during the bevel gear tests 
were even more sensitive to load fluctuations.  NA4 Reset was calculated for the bevel 
tests by correcting for a 4% load fluctuation.  This enabled the same NA4 Reset 
membership functions used for the spur gear tests to be used for the bevel rig tests.  The 
membership values for the FM4 and NA4 Reset features were shown on Figures 3.39 and 
3.40. 

 
 
 
 

Figure 11.4.—Output of oil debris membership function for bevel test 1
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Figure 4.7.�Output of oil debris membership function for bevel test 1. 
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  Vibration data were collected on both sides of the gearbox.  However, the 
vibration feature calculated on the right side began to substantially increase, indicating 
damage was beginning to occur on the right side of the test rig.  The right side vibration 
and oil debris features are plotted on Figure 4.10.  The gears were inspected at test 
completion and damage to two teeth on the right side pinion is shown in Figure 4.11.  
Figure 4.12 shows the output of the fuzzy logic model for this experiment.  The only 
change to the model from the spur gear tests is the change to the oil debris membership 
values for the 3 levels of damage as shown in Figure 4.6.  As discussed in section 3.3, 
Feature Validation, the maximum value for NA4 Reset and FM4 is input into the model.  
For the Spur Gear Fatigue Test Rig, the two accelerometers are measuring one pair of 
meshing gears.  For the Spiral Bevel Fatigue Rig, the left accelerometer measures the 
vibration from the left pair of gears and the right accelerometer measures the vibration 
from the right pair of meshing gears (See Figure 4.4).  Although it is outside the scope of 
this thesis, a more complex model can be developed that indicates the location of the 
damage based on the accelerometer location.  The data obtained from the Spiral Bevel 
Fatigue Rig also reinforces the importance and benefit of fusing different measurement 
technologies for a more reliable damage detection system.   

Vibration data and oil debris data were also collected for the fourth bevel 
experiment.  Vibration data were collected on both sides of the gearbox.  For this 
experiment, the vibration feature calculated from the left accelerometer began to 
substantially increase indicating damage was beginning to occur to the gears on the left 
side of the test rig.  The left side vibration feature and the oil debris feature are plotted on 
Figure 4.13 and with an expanded scale in Figure 4.14.  The gears were inspected at test 
completion and damage to one tooth on the left side pinion is shown in Figure 4.15. 
Figure 4.16 shows the output of the fuzzy logic model for this experiment.  The initial 
output indicates inspection at approximately reading 6000.  But, looking at NA4 Reset, 
this feature began to increase after reading 5200.  NA4 reset appears a more reliable 
feature for the bevel rigs as compared to the spur rigs.  In order to capture this improved 
feature performance, one rule in the model was modified.  For the Spur Gear Fatigue Rig 
if the NA4 Reset feature was high, but the FM4 and oil debris features were low, the state 
of the system was O.K.  This output state was changed to Inspect for the bevel tests.  The 
changed rule, rule 4, is highlighted in Table 4.4.  The output of the model, with rule 4 
changed, is shown in Figure 4.17.  This new output indicates to inspect the gears at 
reading 5400, 10 hours sooner. 

This was a simple system analysis on a limited data from the bevel test rigs. 
Additional data sets are required to modify the model for optimum performance for this 
new system.   This chapter was included to show how simple changes can be made to the 
basic model for applications to other geared systems.  These promising results show how 
this process may be applied to other systems.  As additional data is acquired on other 
geared systems, more techniques can be developed for applying this process to more 
complex systems. 
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Figure 11.7.—Vibration and oil debris features for bevel test 3.
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Figure 4.10.�Vibration and oil debris features for bevel test 3. 

Figure 4.11.�Damage to right pinion teeth during bevel test 3. 
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Figure 11.9.—Vibration and oil debris features for bevel test 3.
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Figure 11.10.—Vibration and oil debris features for bevel test 4.
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Figure 4.12.�Fuzzy logic model output for bevel test 3. 

Figure 4.13.�Vibration and oil debris features for bevel test 4. 
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Reading number

Figure 11.11.—Vibration and oil debris features for bevel test 4 with expanded scale.
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Figure 4.14.�Vibration and oil debris features for bevel test 4 with expanded scale. 

Figure 4.15.�Damage to left pinion teeth during bevel test 4. 
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Figure 11.13.—Fuzzy logic model output for bevel test 4.  
 
 
 
 
 
 
 

TABLE 4.4 
Rules for Bevel Rig Fuzzy Logic Model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. If (FM4 is DL) and (NA4 is DL) and (debris is DL) then (output is O.K) 
2. If (FM4 is DH) and (NA4 is DH) and (debris is DH) then (output is SHUTDOWN) 
3. If (FM4 is DL) and (NA4 is DL) and (debris is DM) then (output is INSPECT) 
4. If (FM4 is DL) and (NA4 is DH) and (debris is DL) then (output is INSPECT) 
5. If (FM4 is DL) and (NA4 is DL) and (debris is DH) then (output is INSPECT) 
6. If (FM4 is DH) and (NA4 is DL) and (debris is DL) then (output is O.K) 
7. If (FM4 is DH) and (NA4 is DL) and (debris is DM) then (output is INSPECT) 
8. If (FM4 is DH) and (NA4 is DH) and (debris is DL) then (output is INSPECT) 
9. If (FM4 is DH) and (NA4 is DL) and (debris is DH) then (output is SHUTDOWN) 
10. If (FM4 is DH) and (NA4 is DH) and (debris is DM) then (output is INSPECT) 
11. If (FM4 is DL) and (NA4 is DH) and (debris is DH) then (output is SHUTDOWN) 
12. If (FM4 is DL) and (NA4 is DH) and (debris is DM) then (output is INSPECT) 

Figure 4.16.�Fuzzy logic model output for bevel test 4. 
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Figure 11.14.—Fuzzy logic model output for bevel test 4 with rule 4.  
 
 

Figure 4.17.�Fuzzy logic model output for bevel test 4 with modified rule 4. 
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Chapter 5 
 

CONCLUSIONS 
 

The integration of two measurement technologies, oil debris analysis and 
vibration, results in a system with improved damage detection and decision-making 
capabilities. Vibration and oil debris data were collected from experiments in the NASA 
Glenn Spur Gear Fatigue Rig. Oil debris and vibration features were obtained and input 
into a data fusion process. Using fuzzy logic techniques applied to the oil debris and 
vibration data, a simple system model was developed that discriminates between stages 
of pitting wear. Additional tests were run to verify the system detects damage on data not 
used to build the model. Results indicate combining the vibration and oil debris 
measurement technologies improves the detection of pitting damage on spur gears. As a 
result of this research, the diagnostic tools used for damage detection in the NASA Glenn 
Spur Gear Fatigue Rigs have been significantly improved.  

Several other findings were made that will impact the development of health 
monitoring tools for geared systems. The first being, oil debris analysis is more reliable 
than vibration analysis for detecting pitting fatigue failure of spur gears. The second 
finding is that some vibration algorithms are as sensitive to operational effects as they are 
to damage. NA4 Reset was developed as the result of this finding. The third finding is 
that vibration algorithms FM4 and NA4 Reset do not indicate damage progression, but 
the increase in oil debris mass is related to damage progression. The fourth finding is that 
clear threshold limits must be established by the developer of the diagnostic tool if it is to 
be applied to other systems. The development of membership functions for each 
parameter will improve this process. It also enables the end user to replace these 
parameters with their own by adjusting the membership functions.  

The study also identified some of the challenges in the area of diagnostics. First, 
one of the reasons it is difficult to develop reliable diagnostic tools is the lack of damage 
data. In many instances, diagnostics are developed based on one or two data sets in 
controlled environments that do not perform well in the harsh environment a helicopter 
transmission experiences. A database of continuous transitional data from a normal state 
to a failed state must be understood. Unfortunately, this data is  not readily available and 
diagnosticians must settle for failure progression data under documented conditions 
(Becker, et al. (1998)). The data collected in support of this thesis in the NASA Glenn 
Spur Gear Fatigue Rig will improve the diagnostics used when performing spur gear 
fatigue tests. Validation in the field under varying environmental conditions is required 
before benefits to helicopter safety can be claimed. However, the concepts described 
herein may be applicable to other rotating equipment using other measurement 
technologies.  

The second point is also related to the limited damage data. A set of standard 
metrics to quantify the performance of each diagnostic tool does not currently exist. 
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Attempts are being made to develop a comprehensive system for evaluating the 
performance of vibration based diagnostic tools. A web based prototype application is 
under development using different metrics to assess vibration algorithms (Orsagh,  
et al. (1999)). A database of diagnostic data on different systems under different 
operating conditions is still needed to use this application for metric assessment. Once 
this work is complete, a fused system can be developed using many different algorithms 
based on their individual strengths and weaknesses.  

The third point relates to the human factors aspect of diagnostic tool development. 
Many research papers have been written on the development of vibration algorithms and 
the analysis of oil to detect damage to rotating equipment.   As a diagnostician, it is 
important to identify the end user of the diagnostic tool early on in the process. The end 
user of most helicopter transmission diagnostic tools is the technician that determines if 
maintenance is required on the transmission. If the tool being developed requires hours of 
analysis and large amounts of stored data to determine the health of the system, it is 
probably not feasible for this application. It is thus important to keep the man-machine 
interface in mind when designing diagnostic tools. 

Future work is planned to implement the health monitoring techniques developed 
to other drives systems test rigs at NASA Glenn Research Center. Preliminary tests on 
the Spiral Bevel Gear Fatigue Rig suggest that this work can be successfully 
implemented on other systems.  Once oil debris and vibration failure data is obtained 
from different geared systems, a parametric analysis can be performed that will enable 
the development of an optimized system for new applications including different types of 
gears and different test rigs. Analyzing different measurement technologies for 
integration is also needed that may enable different types of failure mechanisms to be 
detected. In a more complicated system with many sensors the membership functions 
could also be expanded to include sensor failure as a state of the system. This will aid in 
the troubleshooting of more complex systems. 

Probabilistic methods were not utilized in this study primarily because of the 
unavailability of sufficient damage data.  As the system under investigation becomes 
more complex, and additional damage data are acquired on these complex systems, 
probabilistic methods will prove beneficial.  Probabilistic methods will provide the tools 
required to classify different types of faults detected on different systems. The future use 
of probabilistic methods will provide a more overall decision support system in the 
development of future diagnostic systems. 

Results of this research leads to several significant conclusions that will impact 
the design of future transmission health monitoring systems. The first being measurement 
of the accumulated mass of the debris generated in the oil is an effective method to 
predict gear pitting damage. Secondly, data fusion utilizing fuzzy logic analysis 
techniques can be successfully used to establish alarm limits on the state of the geared 
system with a decrease in false alarms over conventional trial and error methods. Thirdly, 
by fusing different measurement technologies and including expert knowledge of the 
diagnostician into the system, clear decisions can be made on the health of the geared 
system.  Understanding the strengths, weaknesses and constraints of each measurement 
technology, then capitalizing on these strengths via data fusion, is key to the development 
of future health monitoring systems. 
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Appendix A 
 

Design of Experiments 
 

How many experiments are required to verify the data used to build the model reflects 
the actual process? Looking at the raw sensor data separately, it would be very difficult to 
apply simple statistical analyses to determine sample size. Once again verifying the 
complexity of interpreting the data individually. However, if the fused data from the 
model output is used, simple statistical techniques may be applied to determine the 
minimum number of samples to verify the objectives of this research. In order to do this 
several questions must be answered: 

1. What are the objectives of this study? The objective of this analysis is to 
determine if data from 2 accelerometers and one oil debris monitor can be fused 
into one measurement to predict gear pitting damage. 

2. What hypotheses are going to be entertained? The hypothesis: Does the fused 
data from an undamaged gear look significantly different than the fused data of a 
damaged gear? 

3. What measurements will be used to address the objectives/hypothesis? The 
dependent variables are vibration algorithms NA4, NB4, and the oil debris mass. 
The controlled independent variables are load, rpm, and spur gears. 

4. What test statistic should be used to determine if 2 or more populations of Y 
values are significantly different from one another. In other words, is the fused 
data from damaged gears different than fused data from undamaged gears. A 
pooled t-test was chosen. 

A pooled t test is a procedure that assumes both populations have the same variance 
and standard deviation. The name pooled is used because the standard deviation of the 2 
samples is pooled to get an estimate of the common standard deviation (Ryan and Joiner 
(1994)). This test statistic is used to make inferences about 2 means that are independent 
and the samples are small. When using this statistic, it is assumed that the 2 samples are 
independent, the samples are randomly selected from normally distributed populations, 
and at least 1 of the sample sizes is less than 30 and both samples have the same standard 
deviation. The t-test statistic is calculated as follows (Ryan and Joiner (1994)): 
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In order to calculate sample size, it is modified, and trial and error is used to 

determine sample size. 
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The parameters are defined below: 
 
α = type I error rate, reject null hypothesis when null hypothesis is true = only  
α × 100 percent claim a significant difference in means when there is not. False alarm 
rates = < .01 (1 percent) = .01 
β = type II error rate, fail to reject null hypothesis when null hypothesis is false = only  
β × 100 percent of the time claim there is not a discernable difference in means when 
their truly is. Damage, but do not indicate damage (missed hits). = .01 
δ = µ1 to µ2 = difference in means. How large a difference in means need to be detected? 
Output of fuzzy logic model is 0-1 = 1 
Sp = pooled estimate within population standard deviation (from a previous study). 
Variation expected in final product properties under repeat conditions. Since levels of 
damage are separated into 3 levels (0-.33, .33-.66, and .66-1.0) = .33 

Examples of calculating sample sizes for this research is listed below. The 
samples size is a minimum of 16 with damage or no damage sample being a minimum  
of 5.  
 
Given: α = .01 ; β = .01; δ = 1; Sp = .33 

• If N1 = 8 and N2 = 8 

 ;
2

1(
α

−t  N1 + N2 � 2) = t(0.995,14) = 2.977 = a (A.3) 

 t(1 � β; N1 + N2 �2) = t(0.99,14) = 2.624 = b (A.4) 

 =+
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 .5 = c (A.5) 

 [a + b] * c = 2.80 

pS

δ
= 3.030   2.80 < 3.03 O.K 

 
• If N1 = 5 and N2 = 11 

;
2

1(
α

−t  N1 + N2 � 2) = t(0.995,14) = 2.977 = a 

t(1 � β; N1 + N2 � 2) = t(0.99,14) = 2.624 = b 

=+
21

11

NN
 0.539 = c 

 [a + b] * c = 3.02 

pS

δ
= 3.030   3.02 < 3.03 O.K 
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One problem with using the t-test statistic is that it assumes the data are normally 
distributed. If the data are not normally distributed, nonparametric methods must be used.  

The Wilcoxon Rank-Sum Test was also applied to this data. The Wilcoxon Rank-
Sum Test assumes the 2 independent samples, null hypothesis is that 2 samples come 
from same distribution, alternative hypothesis 2 samples different in some way and each 
sample has more than 10 scores (Triola (1995)). The final output of each experiment was 
used as the samples for damage and no damage data sets and it varied from 0 to 1. Since 
their were only 9 experiments with no damage, it was assumed damage was indicated for 
these 2 additional experiments. An α = .01 was used to identify the z test statistic of 
2.575. The table below for no damage/damage lists the output of the model. The data was 
ranked and the equations are also listed below. This test statistic also found the data sets 
were significantly different. 

 
TABLE A.1�Experiments with damage/no damage at test completion 

No damage Damage 
0.5 (2) 11 1 (6) 20 
0.1 (1) 4.5 0.9 (3) 14 
0.1 (1) 4.5 0.98 (5) 17 
0.1 (1) 4.5 0.95 (4) 15.5 
0.1 (1) 4.5 0.5 (2) 11 
0.1 (1) 4.5 0.95 (4) 15.5 
0.1 (1) 4.5 0.5 (2) 11 
0.1 (1) 4.5 1 (6) 20 

0.1 (1) 4.5 1 (6) 20 

1 (6) 20 0.5 (2) 11 

1 (6) 20 0.5 (2) 11 

 n1=11 

R1= 87 
n2=11 

R2= 166 
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Rank listed in Table 
1-8 (1)�s = (1+2+3+4+5+6+7+8)/8=4.5 
9-13 (2)�s =(9+10+11+13)/5= 11 
14 (3) 
15-16 (4)�s = (15+16)/2=15.5 
17 (5) 
18-22 (6)�2 = (18+19+20+21+22)/5 = 20 
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Appendix B 
 

Statistical Distributions of Wear Debris 
 

One technique in the literature discussed procedures to detect wear conditions in 
gear systems by applying statistical distribution methods to particles collected from 
lubrication systems (Roylance (1989)). The technique involved calculating the mean 
particle size, variance, kurtosis, and relative kurtosis for debris generated from the gear 
systems and collected off-line. The wear activity was determined by the calculated size 
distribution characteristics. In order to apply this data set to on-line oil debris monitor 
data, the calculations were made for each reading number for each bin using an average 
particle size calculated for each bin size range. The mean particle size was calculated as: 
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where  
 
dj = average bin size  
j = number of bins  

[ ]=jdP  number of particles per average bin size per reading/total number of particles per 

reading 
 
Then variance kurtosis and relative variance were calculated as follows (Roylance 
(1989)): 
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Using the particle size distribution of the debris, relative kurtosis, mean particle 
size, and relative kurtosis were calculated for each reading for the experiments with 
damage. Examples of this data are shown in Figures B.1 and B.2. for experiments 2 and 
3. The number of particles per each bin number at test completion, and the particle 
distribution per each bin for each reading is also shown. Refer to Table 7.1 for the 
particle size range for each bin. A consistent feature using these statistical parameters 
could not be found.  Setting threshold limits using relative kurtosis, relative skewness or 
mean particle size would result in a high level of false alarms since it varied significantly 
for each experiment. This information may be useful for future work in defining different 
types of failure mechanisms using different particle sizes.  
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 Figure B.1:  Statistical distribution methods applied to experiment 2 oil debris data.
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Figure B.2:  Statistical distribution methods applied to experiment 3 oil debris data. 
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Appendix C 
 

Modal Analysis for Selecting Accelerometer Locations 
 

A sensor location check was performed on the housing of the Spur Gear Fatigue 
Rig gearbox. An accelerometer was mounted at 5 different locations on the housing and 
an instrumented modal hammer was used to apply a force on the test gear shaft in the 
direction the meshing forces act on the shaft. The location of the accelerometers in inches 
is shown in Figure C.1. The input amplitude was measured using a spectrum analyzer and 
plotted. The plot of the input amplitude indicates the frequencies that are modally active 
at each location. The coherence function was also calculated and plotted. Coherence is 
the measure of the amount of output signal that is related to the input signal at a given 
frequency. A coherence of 1.0 indicates the output is directly related to the input signal at 
the specified frequency.  

Figures C.3 to C.7 show the results of the analysis of the mounting locations on 
the gearbox housing. Measurements were also plotted in Figure C.2 for the existing 
sensor on the gear shaft bearing support (measurements are in inches). Combining 
coherence with minimal modal activity, Location E and B seem to be the best 
accelerometer location. Since previous tests were performed at location E, will continue 
to use location E for the accelerometer housing location.  Figure C.8 shows the location 
of the accelerometers on the Spur Gear Fatigue Rig. 
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Figure C.1: Gear Box Housing Top View. 
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 Figure C.2: Accelerometer on Shaft. Figure C.2: Accelerometer on Shaft Bearing Support 

 Figure C.1: Gear Box Housing Top View. 
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Figure C.3: Accelerometer on Housing Location E. 

Figure C.4: Accelerometer on Housing Location A. 
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Figure C.5: Accelerometer on Housing Location B. 

Figure C.6: Accelerometer on Housing Location C. 
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Figure C.8: Accelerometer Locations on Spur Gear Fatigue Rig. 

Figure C.7: Accelerometer on Housing Location D. 
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Appendix D 
 

Bayesian Statistics 
 

Many analysis techniques can be used for performing data fusion, and there are no 
rules regarding what specific fusion technique will work best for a specific application.  
Decision level fusion processes identity declarations from multiple sensors to achieve a 
joint declaration of identity.  Each sensor performs an identity declaration followed by a 
process that fuses them to joint multisensor identity declaration.  Fuzzy logic was chosen 
in this analysis for the fusion process.  Bayesian inference is another analysis technique 
that can be used for decision level fusion.  Bayesian inference updates the likelihood of a 
hypothesis given a previous likelihood estimate and additional evidence (observations).  
The technique may be based on either classical probabilities or subjective probabilities 
(Hall (1992)).  

Bayesian inference can be used to determine the probability that a diagnosis of 
gear damage is correct given a priori information.  The equation for Bayesian inference 
is: 
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where P( f1 \On) equals the probability of fault (f) given diagnostic output (O), P( On \f1) 
equals the probability that a diagnostic output (O) is associated with fault (f), and P(f1) is 
the probability of (f) occurring (Kacprzynski (2001)).  

Bayesian inference was not chosen for the fusion process for several reasons. The 
first was defining a prior likelihood�s for the vibration and oil debris features.  Bayesian 
inference requires knowledge about the diagnostic system to generate the a priori 
distributions.  Integration of the vibration and oil debris features is a new diagnostic 
technique.  The data integrating two vibration algorithms and the oil debris sensor does 
not exist outside the scope of this thesis.   Bayesian inference requires a priori 
probabilities of the hypotheses that did not exist outside the scope of this research.  
Limited knowledge and data made it impossible to translate the preliminary data into a 
probability distributions. 

Another reason is that the data did not necessarily follow a normal distribution.  
Both data sets showed a deviation from normality in terms of kurtosis and skewness.  The 
oil debris data had large amounts of skewness and the vibration algorithms are defined in 
terms of kurtosis. All parameters showed a deviation from normality in terms of kurtosis 
and skewness.  A normal distribution is symmetric and has no kurtosis (how heavy the 
tails of distribution are).  Since the data does not follow a normal distribution is was not 
clear how this would affect the resulting posterior distribution (Iverson (1984)).   
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The complexity of the data due to multiple hypothesis and multiple conditional 
dependent events made it difficult to define levels of probability for each scenario.  For 
example the different levels of damage indicated by each sensor and the resulting 
different states of the system.    The complexity of the time dependent data made it 
difficult to define simple probabilities.  Assumptions can be made based on a 
probabilities for each experiment that relate to the gear state based on the final test 
reading.  This does not provide on-line condition maintenance for the duration of the test.  
Instead, the data is processed through the fuzzy logic model and normalized to 1, and this 
data is then used as an input to the Bayesian inference system.   

The success of the inference system depends on its ability to represent knowledge 
about the application domain.  Bayesian statistics is useful when applied to fault 
classification, where a large amount of fault data is acquired on different types of faults 
(Erdley and Hall (1998)).  Fuzzy logic was a better choice for this application by 
establishing relationships between different measurement technologies to identify the 
state of the gear with limited data. 
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